scholarly journals Novel technique based on cascade classifiers for smoke image detection

Author(s):  
Muaayed F. Al-Rawi ◽  
Yasameen A. Ghani Alyouzbaki

AbstractThis article contributes a novel technique based on cascade classifiers for smoke detection by utilizing the image processing method. It has been a difficult issue for ten years or so due to its variety in shape, texture, and color. In this article, a machine learning methodology is represented to tackle this issue and simulated with MATLAB software. The smoke detection issue acted like a classification issue. The solution is demonstrated as a binary classification issue. Hence, the support vector machine (SVM) is represented for classification. In order to train and test the SVM classifier, both samples of positive and negative are gathered. Two SVM classifiers are utilized in the cascade. The first classifier distinguishes the presence of smoke if smoke presents in a provided input image; the second classifier is utilized to find the locale of smoke in a provided input image. The size of the window is set to 32 × 32 and slided across the whole image to identify the smoke in a zone of the window. The novel technique is a training dataset and utilizing linear kernel function. In this manner, the novel technique is tested with a test dataset. The first SVM classifier obtained 100% accuracy in training and 96% accuracy in testing. A training accuracy of 96% and a test accuracy of 93.6% were obtained by the second SVM classifier. This novel technique proved to be more proficient and cost-savvy than the traditional strategies.

2021 ◽  
Vol 7 ◽  
pp. e680
Author(s):  
Muhammad Amirul Abdullah ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Aizzat Zakaria ◽  
Mohd Azraai Mohd Razman ◽  
...  

This study aims at classifying flat ground tricks, namely Ollie, Kickflip, Shove-it, Nollie and Frontside 180, through the identification of significant input image transformation on different transfer learning models with optimized Support Vector Machine (SVM) classifier. A total of six amateur skateboarders (20 ± 7 years of age with at least 5.0 years of experience) executed five tricks for each type of trick repeatedly on a customized ORY skateboard (IMU sensor fused) on a cemented ground. From the IMU data, a total of six raw signals extracted. A total of two input image type, namely raw data (RAW) and Continous Wavelet Transform (CWT), as well as six transfer learning models from three different families along with grid-searched optimized SVM, were investigated towards its efficacy in classifying the skateboarding tricks. It was shown from the study that RAW and CWT input images on MobileNet, MobileNetV2 and ResNet101 transfer learning models demonstrated the best test accuracy at 100% on the test dataset. Nonetheless, by evaluating the computational time amongst the best models, it was established that the CWT-MobileNet-Optimized SVM pipeline was found to be the best. It could be concluded that the proposed method is able to facilitate the judges as well as coaches in identifying skateboarding tricks execution.


2020 ◽  
pp. 3397-3407
Author(s):  
Nur Syafiqah Mohd Nafis ◽  
Suryanti Awang

Text documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the text documents at the first stage. SVM-RFE utilized a backward feature elimination scheme to recursively remove insignificant features from the filtered feature subsets at the second stage. This research executes sets of experiments using a text document retrieved from a benchmark repository comprising a collection of Twitter posts. Pre-processing processes are applied to extract relevant features. After that, the pre-processed features are divided into training and testing datasets. Next, feature selection is implemented on the training dataset by calculating the TF-IDF score for each feature. SVM-RFE is applied for feature ranking as the next feature selection step. Only top-rank features will be selected for text classification using the SVM classifier. Based on the experiments, it shows that the proposed technique able to achieve 98% accuracy that outperformed other existing techniques. In conclusion, the proposed technique able to select the significant features in the unstructured and high dimensional text document.


2021 ◽  
Author(s):  
Alberto Gerri ◽  
Ahmed Shokry ◽  
Enrico Zio ◽  
Marco Montini

Abstract Hydrates formation in subsea pipelines is one of the main reliability concerns for flow assurance engineers. A fast and reliable assessment of the Cool-Down Time (CDT), the period between a shut-down event and possible hydrates formation in the asset, is of key importance for the safety of operations. Existing methods for the CDT prediction are highly dependent on the use of very complex physics-based models that demand large computational time, which hinders their usage in an online environment. Therefore, this work presents a novel methodology for the development of surrogate models that predict, in a fast and accurate way, the CDT in subsea pipelines after unplanned shutdowns. The proposed methodology is, innovatively, tailored on the basis of reliability perspective, by treating the CDT as a risk index, where a critic CDT threshold (i.e. the minimum time needed by the operator to preserve the line from hydrates formation) is considered to distinguish the simulation outputs into high-risk and low-risk domains. The methodology relies on the development of a hybrid Machine Learning (ML) based model using datasets generated through complex physics-based model’ simulations. The hybrid ML-based model consists of a Support Vector Machine (SVM) classifier that assigns a risk level (high or low) to the measured operating condition of the asset, and two Artificial Neural Networks (ANNs) for predicting the CDT at the high-risk (low CDT) or the low-risk (high CDT) operating conditions previously assigned by the classifier. The effectiveness of the proposed methodology is validated by its application to a case study involving a pipeline in an offshore western African asset, modelled by a transient physics-based commercial software. The results show outperformance of the capabilities of the proposed hybrid ML-based model (i.e., SVM + 2 ANNs) compared to the classical approach (i.e. modelling the entire system with one global ANN) in terms of enhancing the prediction of the CDT during the high-risk conditions of the asset. This behaviour is confirmed applying the novel methodology to training datasets of different size. In fact, the high-risk Normalized Root Mean Square Error (NRMSE) is reduced on average of 15% compared to the NRMSE of a global ANN model. Moreover, it’s shown that high-risk CDT are better predicted by the hybrid model even if the critic CDT, which divides the simulation outputs in high-risk and low-risk values (i.e. the minimum time needed by the operator to preserve the line from hydrates formation), changes. The enhancement, in this case, is on average of 14.6%. Eventually, results show how the novel methodology cuts down by more than one hundred seventy-eight times the computational times for online CDT predictions compared to the physics-based model.


2020 ◽  
Vol 10 (16) ◽  
pp. 5686
Author(s):  
Ines A. Cruz-Guerrero ◽  
Raquel Leon ◽  
Daniel U. Campos-Delgado ◽  
Samuel Ortega ◽  
Himar Fabelo ◽  
...  

Hyperspectral imaging is a multidimensional optical technique with the potential of providing fast and accurate tissue classification. The main challenge is the adequate processing of the multidimensional information usually linked to long processing times and significant computational costs, which require expensive hardware. In this study, we address the problem of tissue classification for intraoperative hyperspectral images of in vivo brain tissue. For this goal, two methodologies are introduced that rely on a blind linear unmixing (BLU) scheme for practical tissue classification. Both methodologies identify the characteristic end-members related to the studied tissue classes by BLU from a training dataset and classify the pixels by a minimum distance approach. The proposed methodologies are compared with a machine learning method based on a supervised support vector machine (SVM) classifier. The methodologies based on BLU achieve speedup factors of ~459× and ~429× compared to the SVM scheme, while keeping constant and even slightly improving the classification performance.


Author(s):  
PETER MC LEOD ◽  
BRIJESH VERMA

This paper presents a novel technique for the classification of suspicious areas in digital mammograms. The proposed technique is based on clustering of input data into numerous clusters and amalgamating them with a Support Vector Machine (SVM) classifier. The technique is called multi-cluster support vector machine (MCSVM) and is designed to provide a fast converging technique with good generalization abilities leading to an improved classification as a benign or malignant class. The proposed MCSVM technique has been evaluated on data from the Digital Database of Screening Mammography (DDSM) benchmark database. The experimental results showed that the proposed MCSVM classifier achieves better results than standard SVM. A paired t-test and Anova analysis showed that the results are statistically significant.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Atiqur Rahman ◽  
Sanam Shahla Rizvi ◽  
Aurangzeb Khan ◽  
Aaqif Afzaal Abbasi ◽  
Shafqat Ullah Khan ◽  
...  

Parkinson’s disease (PD) is one of the most common and serious neurological diseases. Impairments in voice have been reported to be the early biomarkers of the disease. Hence, development of PD diagnostic tool will help early diagnosis of the disease. Additionally, intelligent system developed for binary classification of PD and healthy controls can also be exploited in future as an instrument for prodromal diagnosis. Notably, patients with rapid eye movement (REM) sleep behaviour disorder (RBD) represent a good model as they develop PD with a high probability. It has been shown that slight speech and voice impairment may be a sensitive marker of preclinical PD. In this study, we propose PD detection by extracting cepstral features from the voice signals collected from people with PD and healthy subjects. To classify the extracted features, we propose to use dimensionality reduction through linear discriminant analysis and classification through support vector machine. In order to validate the effectiveness of the proposed method, we also developed ten different machine learning models. It was observed that the proposed method yield area under the curve (AUC) of 88%, sensitivity of 73.33%, and specificity of 84%. Moreover, the proposed intelligent system was simulated using publicly available multiple types of voice database. Additionally, the data were collected from patients under on-state. The obtained results on the public database are promising compared to the previously published work.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanfei Li ◽  
Xianying Feng ◽  
Yandong Liu ◽  
Xingchang Han

AbstractThis work researched apple quality identification and classification from real images containing complicated disturbance information (background was similar to the surface of the apples). This paper proposed a novel model based on convolutional neural networks (CNN) which aimed at accurate and fast grading of apple quality. Specific, complex, and useful image characteristics for detection and classification were captured by the proposed model. Compared with existing methods, the proposed model could better learn high-order features of two adjacent layers that were not in the same channel but were very related. The proposed model was trained and validated, with best training and validation accuracy of 99% and 98.98% at 2590th and 3000th step, respectively. The overall accuracy of the proposed model tested using an independent 300 apple dataset was 95.33%. The results showed that the training accuracy, overall test accuracy and training time of the proposed model were better than Google Inception v3 model and traditional imaging process method based on histogram of oriented gradient (HOG), gray level co-occurrence matrix (GLCM) features merging and support vector machine (SVM) classifier. The proposed model has great potential in Apple’s quality detection and classification.


2017 ◽  
Vol 3 (2) ◽  
pp. 191-194 ◽  
Author(s):  
Tamer Abdulbaki Alshirbaji ◽  
Nour Aldeen Jalal ◽  
Lars Mündermann ◽  
Knut Möller

AbstractSmoke in laparoscopic videos usually appears due to the use of electrocautery when cutting or coagulating tissues. Therefore, detecting smoke can be used for event-based annotation in laparoscopic surgeries by retrieving the events associated with the electrocauterization. Furthermore, smoke detection can also be used for automatic smoke removal. However, detecting smoke in laparoscopic video is a challenge because of the changeability of smoke patterns, the moving camera and the different lighting conditions. In this paper, we present a video-based smoke detection algorithm to detect smoke of different densities such as fog, low and high density in laparoscopic videos. The proposed method depends on extracting various visual features from the laparoscopic images and providing them to support vector machine (SVM) classifier. Features are based on motion, colour and texture patterns of the smoke. We validated our algorithm using experimental evaluation on four laparoscopic cholecystectomy videos. These four videos were manually annotated by defining every frame as smoke or non-smoke frame. The algorithm was applied to the videos by using different feature combinations for classification. Experimental results show that the combination of all proposed features gives the best classification performance. The overall accuracy (i.e. correctly classified frames) is around 84%, with the sensitivity (i.e. correctly detected smoke frames) and the specificity (i.e. correctly detected non-smoke frames) are 89% and 80%, respectively.


2018 ◽  
Vol 1 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Devin Joseph Frey ◽  
Avdesh Mishra ◽  
Md Tamjidul Hoque ◽  
Mahdi Abdelguerfi ◽  
Thomas Soniat

In this work, we address a multi-class classification task of oyster vessel behaviors determination by classifying them into four different classes: fishing, traveling, poling (exploring) and docked (anchored). The main purpose of this work is to automate the oyster vessel behaviors determination task using machine learning and to explore different techniques to improve the accuracy of the oyster vessel behavior prediction problem. To employ machine learning technique, two important descriptors: speed and net speed, are calculated from the trajectory data, recorded by a satellite communication system (Vessel Management System, VMS) attached to the vessels fishing on the public oyster grounds of Louisiana. We constructed a support vector machine (SVM) based method which employs Radial Basis Function (RBF) as a kernel to accurately predict the behavior of oyster vessels. Several validation and parameter optimization techniques were used to improve the accuracy of the SVM classifier. A total 93% of the trajectory data from a July 2013 to August 2014 dataset consisting of 612,700 samples for which the ground truth can be obtained using rule-based classifier is used for validation and independent testing of our method. The results show that the proposed SVM based method is able to correctly classify 99.99% of 612,700 samples using the 10-fold cross validation. Furthermore, we achieved a precision of 1.00, recall of 1.00, F1-score of 1.00 and a test accuracy of 99.99%, while performing an independent test using a subset of 93% of the dataset, which consists of 31,418 points.


2014 ◽  
Vol 945-949 ◽  
pp. 1875-1879
Author(s):  
Tao Li ◽  
Dong Mei Li ◽  
Ren Jie Huang ◽  
Xue Zhu Zhao

In order to improve the accuracy of people counting in video surveillance, the method for people counting based on the analysis of the mass is proposed. The novel algorithm of objects tracking is designed to aim at people counting, and the people counting model is obtained by training a support vector machine (SVM) classifier with the input of the feature of mass. The experimental results show that the accuracy of counting is over 93%.


Sign in / Sign up

Export Citation Format

Share Document