scholarly journals Comparison of biofilm formation between non-pathogenic Listeria strains under different stress conditions

Author(s):  
Endrit Hasani ◽  
Sabrine Labidi ◽  
Csilla Mohácsi-Farkas ◽  
Gabriella Kiskó

AbstractMicro-organisms can attach to food surfaces and develop biofilms which present a concern in food and environmental safety. The main goal of the current study was to investigate the biofilm formation of six non-pathogenic Listeria strains under different stress conditions using a microplate assay. The effect of the weak biofilm-forming non-pathogenic Listeria strains on the biofilm formation of a strong biofilm-forming pathogenic Listeria strain (Listeria monocytogenes #8) was also examined. Listeria innocua CCM4030, Listeria innocua 2885 and Listeria seeligeri/welshimeri 292 showed the same patterns of biofilm formation with increasing NaCl concentrations from 0.05 to 15%, but all the other strains showed a continuously decreasing trend of OD595 in the same conditions. This study showed that in the case of non-pathogenic Listeria strains, higher concentrations of NaCl do not present a stress condition that enhances biofilm formation. Decrease in pH inhibited biofilm formation for all the non-pathogenic Listeria strains. The weak biofilm forming non-pathogenic Listeria strains (Listeria innocua 2885 and Listeria innocua CCM4030) overgrew the strong biofilm-forming Listeria strain (Listeria monocytogenes #8) during biofilm formation. This phenomenon could be beneficial and potentially be used as a novel control strategy to prevent the colonization of the pathogenic Listeria at food processing facilities such as in meat industry.

Author(s):  
S. R. Warke ◽  
V. C. Ingle ◽  
N. V. Kurkure ◽  
P. A. Tembhurne ◽  
Minakshi Prasad ◽  
...  

Listeria monocytogenes, an opportunistic food borne pathogen can cause serious infections in immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments.The biofilm transfers contamination to food products and impose risk to public health. In the present study biofilm producing ability of L. monocytogenes isolates were investigated phenotypically and genotypically by microtiter assay and multiplex PCR, respectively. Out of 38 L. monocytogenes isolates 14 were recovered from animal clinical cases, 12 bovine environment and 12 from milk samples. A total of 3 (21.42%) clinical, 2 (16.66%) environment and 3 (25%) milk samples respectively, revealed biofilm production in microtiter assay. Cumulative results showed that 23 (60.52%) out of 38 strains of L. monocytogenes were positive for luxS and flaA gene and 1 (2.63%) was positive only for the flaA gene.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 250 ◽  
Author(s):  
Daniel Rodríguez-Campos ◽  
Cristina Rodríguez-Melcón ◽  
Carlos Alonso-Calleja ◽  
Rosa Capita

Some strains of Listeria monocytogenes can persist in food-processing environments, increasing the likelihood of the contamination of foodstuffs. To identify traits that contribute to bacterial persistence, a selection of persistent and sporadic L. monocytogenes isolates from a poultry-processing facility was investigated for biofilm-forming ability (crystal violet assay). The susceptibility of sessile cells to treatments (five minutes) with sodium hypochlorite having 10% active chlorine (SHY: 10,000 ppm, 25,000 ppm, and 50,000 ppm) and benzalkonium chloride (BZK: 2500 ppm, 10,000 ppm, and 25,000 ppm) was also studied. All isolates exhibited biofilm formation on polystyrene. Persistent strains showed larger (p < 0.001) biofilm formation (OD580 = 0.301 ± 0.097) than sporadic strains (OD580 = 0.188 ± 0.082). A greater susceptibility to disinfectants was observed for biofilms of persistent strains than for those of sporadic strains. The application of SHY reduced biofilms only for persistent strains. BZK increased OD580 in persistent strains (2500 ppm) and in sporadic strains (all concentrations). These results indicate that the use of BZK at the concentrations tested could represent a public health risk. Findings in this work suggest a link between persistence and biofilm formation, but do not support a relationship between persistence and the resistance of sessile cells to disinfectants.


2018 ◽  
Vol 81 (4) ◽  
pp. 582-592 ◽  
Author(s):  
HYE RI JEON ◽  
MI JIN KWON ◽  
KI SUN YOON

ABSTRACT Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.


2019 ◽  
Vol 7 (10) ◽  
pp. 438
Author(s):  
Alessia Levante ◽  
Claudia Folli ◽  
Barbara Montanini ◽  
Alberto Ferrari ◽  
Erasmo Neviani ◽  
...  

Toxin-antitoxin (TA) systems are widely distributed in bacterial genomes and are involved in the adaptive response of microorganisms to stress conditions. Few studies have addressed TA systems in Lactobacillus and their role in the adaptation to food environments and processes. In this work, for six strains belonging to L. casei group isolated from dairy products, the expression of DinJ-YafQ TA system was investigated after exposure to various food-related stresses (nutrient starvation, low pH, high salt concentration, oxidative stress, and high temperature), as well as to the presence of antibiotics. In particular, culturability and DinJ-YafQ expression were evaluated for all strains and conditions by plate counts and RT qPCR. Among all the food-related stress conditions, only thermal stress was capable to significantly affect culturability. Furthermore, exposure to ampicillin significantly decreased the culturability of two L. rhamnosus strains. The regulation of DinJ-YafQ TA system resulted strain-specific; however, high temperature was the most significant stress condition able to modulate DinJ-YafQ expression. The increasing knowledge about TA systems activity and regulation might offer new perspectives to understand the mechanisms that L. casei group strains exploit to adapt to different niches or production processes.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Joana Barbosa ◽  
Sandra Borges ◽  
Ruth Camilo ◽  
Rui Magalhães ◽  
Vânia Ferreira ◽  
...  

Objective. A total of 725Listeria monocytogenesisolates, 607 from various foods and 118 from clinical cases of listeriosis, were investigated concerning their ability to form biofilms, at 4°C during 5 days and at 37°C during 24 h.Methods. Biofilm production was carried out on polystyrene tissue culture plates. FiveL. monocytogenesisolates were tested for biofilm formation after being exposed to acidic and osmotic stress conditions.Results. Significant differences (P<0.01) between clinical and food isolates were observed. At 37°C for 24 h, most food isolates were classified as weak or moderate biofilm formers whereas all the clinical isolates were biofilm producers, although the majority were weak. At 4°C during 5 days, 65 and 59% isolates, from food and clinical cases, respectively, were classified as weak. After both sublethal stresses, at 37°C just one of the five isolates tested was shown to be more sensitive to subsequent acidic exposure. However, at 4°C both stresses did not confer either sensitivity or resistance.Conclusions. Significant differences between isolates origin, temperature, and sublethal acidic stress were observed concerning the ability to form biofilms. Strain, origin, and environmental conditions can determine the level of biofilm production byL. monocytogenesisolates.


1996 ◽  
Vol 59 (8) ◽  
pp. 827-831 ◽  
Author(s):  
ISABEL C. BLACKMAN ◽  
JOSEPH F. FRANK

The objective of this research was to determine the ability of Listeria monocytogenes to grow as a biofilm on various food-processing surfaces including stainless steel, Teflon®, nylon, and polyester floor sealant. Each of these surfaces was able to support biofilm formation when incubation was at 21°C in Trypticase soy broth (TSB). Biofilm formation was greatest on polyester floor sealant (40% of surface area covered after 7 days of incubation) and least on nylon (3% coverage). The use of chemically defined minimal medium resulted in a lack of biofilm formation on polyester floor sealant, and reduced biofilm levels on stainless steel. Biofilm formation was reduced with incubation at 10°C, but Teflon® and stainless steel still allowed 23 to 24% coverage after incubation in TSB for 18 days. Biofilm growth of L. monocytogenes was sufficient to provide a substantial risk of this pathogen contaminating the food-processing plant environment if wet surfaces are not maintained in a sanitary condition.


1995 ◽  
Vol 58 (6) ◽  
pp. 609-613 ◽  
Author(s):  
KEVIN G. KERR ◽  
PETER KITE ◽  
JOHN HERITAGE ◽  
PETER M. HAWKEY

One hundred and three strains of Listeria monocytogenes(Lm), Listeria seeligeri and Listeria innocua of clinical, food, and environmental origin were examined by generating randomly amplified polymorphic DNA (RAPD). Using one 10 bp and two 13 bp random primers, epidemiologically related strains, previously shown to be indistinguishable by phage typing, yielded identical RAPD profiles. Strains isolated from the hands of three workers in a retail food establishment showed the presence of a single predominant Lm isolate. RAPD analysis is a rapid, reproducible, and relatively inexpensive method for the differentiation of epidemiologically linked isolates of Listeria spp.


2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Eva Harter ◽  
Eva Maria Wagner ◽  
Andreas Zaiser ◽  
Sabrina Halecker ◽  
Martin Wagner ◽  
...  

ABSTRACT The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB. Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments.


Sign in / Sign up

Export Citation Format

Share Document