scholarly journals Súlyos hypoxaemia légszomj nélkül COVID–19-pneumoniában

2021 ◽  
Vol 162 (10) ◽  
pp. 362-365
Author(s):  
György Losonczy ◽  
József Lukácsovits ◽  
Zoltán Süttő ◽  
András Lorx ◽  
Veronika Müller

Összefoglaló. Számos közlemény született arról, hogy a COVID–19-pneumoniás betegek jelentős hányadában az artériás parciális oxigéntenzió kifejezetten alacsony, mégsem jellemző a dyspnoe, és a pulzusoximetria sem mutat – a csökkent oxigéntenzióval arányos – súlyos hypoxaemiát. A jelenséget „happy hypoxaemia” néven említik. Ugyanakkor a légszomjról nem panaszkodó, de súlyos alveolocapillaris O2-felvételi zavarban szenvedő COVID–19-pneumoniás betegek a legkisebb fizikai megterhelést sem tűrik, és állapotuk gyorsan kritikussá válhat, tehát a hypoxaemia mértékének időben való felismerése kulcskérdés. A jelen közleményben egy ilyen eset rövid ismertetése után összefoglaljuk a súlyos, de tünetmentes hypoxaemia hátterében meghúzódó élettani okokat. Ezek között szerepel a hypocapnia (respiratoricus alkalosis) is, mely alacsony oxigéntenzió mellett is a hemoglobin viszonylag megtartott oxigénszaturációját eredményezi. Ezért a mindennapi COVID–19-ellátásban a megismételt artériásvérgáz-meghatározások jelentősége nem hangsúlyozható eléggé. Orv Hetil. 2021; 162(10): 362–365. Summary. Many COVID-19 patients have very low arterial partial oxigen tension while severe dyspnoe does not develop. Pulse oxymetry indicates only moderate reduction of arterial O2 saturation in these patients. The phenomenon is named “happy hypoxaemia”. Lack of (severe) dyspnoe and only moderately decreased O2 saturation in severely impaired alveolo-capillary O2 uptake may partially be explained by an increased oxygen affinity of hemoglobin in the presence of low arterial partial pressure of CO2. The latter results from increased alveolar ventilation, while low partial pressure of O2 in COVID-19 patients reflects right-to-left shunting of pulmonary blood flow and ventilation-perfusion mismatch of the diseased lungs. While such patients may have mild complaints as related to the real impairment of alveolo-capillary oxygen exchange, severe hypoxaemia is a negative prognostic factor of outcome in this state where severe clinical deterioration may rapidly appear. The latter circumstance together with the unusual relationship of O2 partial pressure and O2 saturation of hemoglobin in COVID-19 emphasize the importance of repeated complete arterial blood gas analyses in these patients. Orv Hetil. 2021; 162(10): 362–365.

2019 ◽  
pp. 203-206
Author(s):  
Mevlut Demir ◽  
◽  
Muslum Sahin ◽  
Ahmet Korkmaz ◽  
◽  
...  

Carbon monoxide intoxication occurs usually via inhalation of carbon monoxide that is emitted as a result of a fire, furnace, space heater, generator, motor vehicle. A 37-year-old male patient was admitted to the emergency department at about 5:00 a.m., with complaints of nausea, vomiting and headache. He was accompanied by his wife and children. His venous blood gas measures were: pH was 7.29, partial pressure of carbon dioxide (pCO2) was 42 mmHg, partial pressure of oxygen (pO2) was 28 mmHg, carboxyhemoglobin (COHb) was 12.7% (reference interval: 0.5%-2.5%) and oxygen saturation was 52.4%. Electrocardiogram (ECG) examination showed that the patient was not in sinus rhythm but had atrial fibrillation. After three hours the laboratory examination was repeated: Troponin was 1.2 pg/ml and in the arterial blood gas COHb was 3%. The examination of the findings on the monitor showed that the sinus rhythm was re-established. The repeated ECG examination confirmed the conversion to the sinus rhythm. He was monitored with the normobaric oxygen administration.


2021 ◽  
Vol 11 (3) ◽  
pp. 517-521
Author(s):  
Alejandro Montero-Salinas ◽  
Marta Pérez-Ramos ◽  
Fernando Toba-Alonso ◽  
Leticia Quintana-DelRío ◽  
Jorge Suanzes-Hernández ◽  
...  

Aim. To evaluate the influence of time on arterial blood gas values after artery puncture is performed. Method. Prospective longitudinal observational study carried out with gasometric samples from 86 patients, taken at different time intervals (0 (T0), 15 (T15), 30 (T30) and 60 (T60) min), from 21 October 2019 to 21 October 2020. The study variables were: partial pressure of carbon dioxide, bicarbonate, hematocrit, hemoglobin, potassium, lactic acid, pH, partial pressure of oxygen, saturation of oxygen, sodium and glucose. Results. The initial sample consisted of a total of 90 patients. Out of all the participants, four were discarded as they did not understand the purpose of the study; therefore, the total number of participants was 86, 51% of whom were men aged 72.59 on average (SD: 16.23). In the intra-group analysis, differences in PCO2, HCO3, hematocrit, Hb, K+ and and lactic acid were observed between the initial time of the test and the 15, 30 and 60 min intervals. In addition, changes in pH, pO2, SO2, Na and glucose were noted 30 min after the initial sample had been taken. Conclusions. The variation in the values, despite being significant, has no clinical relevance. Consequently, the recommendation continues to be the analysis of the GSA at the earliest point to ensure the highest reliability of the data and to provide the patient with the most appropriate treatment based on those results.


Author(s):  
Kirsty L. Ress ◽  
Gus Koerbin ◽  
Ling Li ◽  
Douglas Chesher ◽  
Phillip Bwititi ◽  
...  

AbstractObjectivesVenous blood gas (VBG) analysis is becoming a popular alternative to arterial blood gas (ABG) analysis due to reduced risk of complications at phlebotomy and ease of draw. In lack of published data, this study aimed to establish reference intervals (RI) for correct interpretation of VBG results.MethodsOne hundred and 51 adult volunteers (101 females, 50 males 18–70 y), were enrolled after completion of a health questionnaire. Venous blood was drawn into safePICO syringes and analysed on ABL827 blood gas analyser (Radiometer Pacific Pty. Ltd.). A non-parametric approach was used to directly establish the VBG RI which was compared to a calculated VBG RI based on a meta-analysis of differences between ABG and VBGResultsAfter exclusions, 134 results were used to derive VBG RI: pH 7.30–7.43, partial pressure of carbon dioxide (pCO2) 38–58 mmHg, partial pressure of oxygen (pO2) 19–65 mmHg, bicarbonate (HCO3−) 22–30 mmol/L, sodium 135–143 mmol/L, potassium 3.6–4.5 mmol/L, chloride 101–110 mmol/L, ionised calcium 1.14–1.29 mmol/L, lactate 0.4–2.2 mmol/L, base excess (BE) −1.9–4.5 mmol/L, saturated oxygen (sO2) 23–93%, carboxyhaemoglobin 0.4–1.4% and methaemoglobin 0.3–0.9%. The meta-analysis revealed differences between ABG and VBG for pH, HCO3−, pCO2 and pO2 of 0.032, −1.0 mmol/L, −4.2 and 39.9 mmHg, respectively. Using this data along with established ABG RI, calculated VBG RI of pH 7.32–7.42, HCO3− 23 – 27 mmol/L, pCO2 36–49 mmHg (Female), pCO2 39–52 mmHg (Male) and pO2 43–68 mmHg were formulated and compared to the VBG RI of this study.ConclusionsAn adult reference interval has been established to assist interpretation of VBG results.


2014 ◽  
Vol 27 (2) ◽  
pp. 196 ◽  
Author(s):  
Daniela Guelho ◽  
Isabel Paiva ◽  
Francisco Carrilho

<strong>Introduction:</strong> In type 2 diabetic patients treated with metformin the development of hyperlactacidemia or even lactic acidosis seems to result from an acute precipitating event. This study aims to assess the prevalence and relative risk of hyperlactacidemia in diabetic patients admitted in the Emergency Room, the predictive factors for high lactate concentration and the influence of hyperlactacidemia in patients’ prognosis.<br /><strong>Material and Methods:</strong> Transversal observational study including patients observed between June and October 2012: 138 type 2 diabetics, 66 treated with metformin, and 83 non-diabetic patients. Studies’ variables: age, sex, cause of admition, blood pressure, drugs, personal history, analytical study (biochemistry and arterial blood gas analyses with lactate) and destination. Statistical analysis was performed using SPSS 21.0®.<br /><strong>Results:</strong> Mean lactate concentration and hyperlactacidemia prevalence were significantly higher in diabetic patients (2.1 ± 0.1mmol/L vs 1.1 ± 0.1mmol/L, p &lt; 0.001 and 39.1% vs 3.6%, p &lt; 0.001, respectively) and in those under metformin compared to other diabetics (2.7 ± 0.2 mmol/L vs 1.6 ± 0.1 mmol/L, p &lt; 0.001 and 56.9% vs 23.3%, p &lt; 0.001, respectively). Diabetics on metformin presented a 25-fold increased risk of hyperlactacidemia (OR = 25.10, p &lt; 0.05). Creatinine was the only independent predictive factor for lactate<br />concentrations (B = 1.33, p &lt; 0.05). Patients with hyperlactacidemia had 4.4 times higher odds of being hospitalized or dying (OR = 4.37, p &lt; 0.05). When hospitalized, they had longer hospitalization periods (21.66 ± 5.86 days vs 13.68 ± 5.33 days, p &lt; 0.001) and higher rate of deaths (12.5% (n = 4) vs 4.3% (n = 2), p &lt; 0.05).<br /><strong>Conclusion:</strong> There was an increased risk of hyperlactacidemia in patients with type 2 diabetes, particularly for those under metformin. Serum creatinine represented the only independent associated factor of lactate concentration. The presence of hyperlactacidemia was associated with worse prognosis.


Author(s):  
Nazlıhan Boyacı ◽  
Sariyya Mammadova ◽  
Nurgül Naurizbay ◽  
Merve Güleryüz ◽  
Kamil İnci ◽  
...  

Background: Transcutaneous partial pressure of carbon dioxide (PtCO2) monitorization provides a continuous and non-invasive measurement of partial pressure of carbon dioxide (pCO2). In addition, peripheral oxygen saturation (SpO2) can also be measured and followed by this method. However, data regarding the correlation between PtCO2 and arterial pCO2 (PaCO2) measurements acquired from peripheric arterial blood gas is controversial. Objective: We aimed to determine the reliability of PtCO2 with PaCO2 based on its advantages, like non-invasiveness and continuous applicability. Methods: Thirty-five adult patients with hypercapnic respiratory failure admitted to our tertiary medical intensive care unit (ICU) were included. Then we compared PtCO2 and PaCO2 and both SpO2 measurements simultaneously. Thirty measurements from the deltoid zone and 26 measurements from the cheek zone were applied. Results: PtCO2 could not be measured from the deltoid region in 5 (14%) patients. SpO2 and pulse rate could not be detected at 8 (26.7%) of the deltoid zone measurements. Correlation coefficients between PtCO2 and PaCO2 from deltoid and the cheek region were r: 0,915 and r: 0,946 (p = 0,0001). In comparison with the Bland-Altman test, difference in deltoid measurements was -1,38 ± 1,18 mmHg (p = 0.252) and in cheek measurements it was -5,12 ± 0,92 mmHg (p = 0,0001). There was no statistically significant difference between SpO2 measurements in each region. Conclusion: Our results suggest that PtCO2 and SpO2 measurements from the deltoid region are reliable compared to the arterial blood gas analysis in hypercapnic ICU patients. More randomized controlled studies investigating the effects of different measurement areas, hemodynamic parameters, and hemoglobin levels are needed.


2019 ◽  
Vol 12 (10) ◽  
pp. e230771
Author(s):  
Taha Almufti ◽  
Franz Eversheim ◽  
Brett Johnson ◽  
Gabriel Ayonmigbesimi Akra

Platypnoea–orthodeoxia syndrome (POS) is a rare disorder characterised by both dyspnoea (platypnoea) and arterial desaturation (orthodeoxia) in the upright position, with improvement in the supine position. We report an unusual case in which an 82-year-old woman developed severe hypoxaemia with POS after left total knee replacement. A significant difference in alveolar–arterial blood gas oxygen tension was demonstrated, and hypoxaemia failed to respond to 100% oxygen supply. A patent foramen ovale with a right-to-left shunt was evident on transoesophageal echocardiogram employing colour Doppler and agitated normal saline studies. Interestingly, the patient’s symptoms resolved within 6 months with ongoing chest physiotherapy, without surgical or medical intervention.


Author(s):  
M. Bush ◽  
J.P. Raath ◽  
D. Grobler ◽  
L. Klein

White rhinoceros anaesthetised with etorphine and azaperone combination develop adverse physiological changes including hypoxia, hypercapnia, acidosis, tachycardia and hypertension. These changes are more marked in field-anaesthetised rhinoceros. This study was designed to develop a technique to improve safety for field-anaesthetised white rhinoceros by tracheal intubation and oxygen insufflation. Twenty-five free-ranging white rhinoceros were anaesthetised with an etorphine and azaperone combination for translocation or placing microchips in their horns. Once anaesthetised the rhinoceros were monitored prior to crating for transportation or during microchip placement. Physiological measurements included heart and respiratory rate, blood pressure and arterial blood gas samples. Eighteen rhinoceros were intubated using an equine nasogastric tube passed nasally into the trachea and monitored before and after tracheal insufflation with oxygen. Seven rhinoceros were not intubated or insufflated with oxygen and served as controls. All anaesthetised rhinoceros were initially hypoxaemic (percentage arterial haemoglobin oxygen saturation (% O2Sa) = 49 % + 16 (mean + SD) and PaO2 = 4.666 + 1.200 kPa (35 + 9 mm Hg)), hypercapnic (PaCO2 = 8.265 + 1.600 kPa (62 + 12 mm Hg)) and acidaemic (pHa = 7.171 + 0.073 ). Base excess was -6.7 + 3.9 mmol/ℓ, indicating a mild to moderate metabolic acidosis. The rhinoceros were also hypertensive (systolic blood pressure = 21.861 + 5.465 kPa (164 + 41 mm Hg)) and tachycardic (HR = 107 + 31/min). Following nasal tracheal intubation and insufflation, the % O2Sa and PaO2 increased while blood pHa and PaCO2 remained unchanged.Tracheal intubation via the nose is not difficult, and when oxygen is insufflated, the PaO2 and the % O2Sa increases, markedly improving the safety of anaesthesia, but this technique does not correct the hypercapnoea or acidosis. After regaining their feet following reversal of the anaesthesia, the animals' blood gas values return towards normality.


2002 ◽  
Vol 96 (4) ◽  
pp. 860-870 ◽  
Author(s):  
Martin J. London ◽  
Thomas E. Moritz ◽  
William G. Henderson ◽  
Gulshan K. Sethi ◽  
Maureen M. O'Brien ◽  
...  

Background Controversy exists regarding the utility of continuous monitoring of mixed venous oxygen saturation (STvo2) during cardiac surgery. During a multicenter, prospective, observational study in the Department of Veterans Affairs (Cooperative Study #5), frequency of use of standard pulmonary artery catheterization (PAC) and STvo2-PAC was recorded. Here the authors relate these data to clinical outcomes. Methods Logistic and Cox regression models evaluating the association of PAC type with mortality, one or more postoperative complications, cardiac complications, time to extubation, and intensive care unit length of stay were constructed. The number of thermodilution cardiac outputs and arterial blood gas analyses performed in the first 24 h postoperatively were compared. Results Data from 3,265 patients undergoing myocardial revascularization (81.7%) or valve replacement-repair (18.3%) were considered. STvo2-PAC was used in 49% and PAC in 51% of patients. In the 14 hospitals, STvo2-PAC was used in all patients in four, in some patients in four, and never in six. No association of STvo2-PAC use with outcome were observed aside from unexplained hospital level effects. A small but statistically significant reduction in the number of arterial blood gas analyses (8 +/- 3 vs. 10 +/- 4, P &lt; 0.0001, STvo2-PAC vs. PAC, respectively) and thermodilution cardiac outputs (14 +/- 8 vs. 15 +/- 9, P &lt; 0.0001, STvo2-PAC vs. PAC, respectively) was observed with use of STvo2-PAC. Conclusions Despite higher cost, STvo2-PAC was commonly used in this cohort. Our analysis failed to detect associations with improved outcomes aside from a small reduction in resource utilization. The precise role of STvo2-PAC remains uncertain.


1983 ◽  
Vol 54 (5) ◽  
pp. 1340-1344 ◽  
Author(s):  
B. M. Lewis

Arterial blood gas samples obtained 5–20 s after stair-climbing exercise were compared with samples taken during the last 30 s of exercise in 137 subjects. Arterial partial pressure of CO2 (PaCO2) did not change significantly, and in 110 subjects the two samples were within the analytical variation (+/- 2 Torr), supporting the cardiodynamic hypothesis of respiratory regulation. Exceptions to this response were 10 subjects who hyperventilated (PaCO2 less than 34) during exercise and 15 with severe obstruction [forced expiratory volume in 1 s (FEV1) less than 70% forced vital capacity (FVC), and FVC less than 70% of predicted] in whom PaCO2 increased significantly. Overall, arterial partial pressure of O2 (PaO2) increased an average of 3.49 Torr (P less than 0.001). In the two groups in which PaCO2 increased, postexercise PaO2 did not rise. In addition, duration of exercise affected PaO2 response. PaO2 increased significantly more after brief (less than 2 min) periods than after longer (4–6 min) exercise, and this difference increased only when subjects with normal or borderline ventilatory function were analyzed. In 13 subjects in whom a second sample was taken 30–45 s after exercise, the increase in PaO2 was progressive and again the difference between short and long exercise was evident. Regulation of respiration to maintain PaCO2 and changes in O2-CO2 kinetics, leading to an increase in the gas exchange ratio at the exercise-rest transition, are the most likely explanations of these data which establish that the usual response to stopping exercise in normal subjects and most patients is an unchanged PaCO2 and a variable increase in PaO2.


Sign in / Sign up

Export Citation Format

Share Document