Molecular cytogenetic analysis of wheat-alien hybrids and derivatives

2002 ◽  
Vol 50 (3) ◽  
pp. 303-311 ◽  
Author(s):  
M. Molnár-Láng ◽  
G Linc ◽  
E. D. Nagy ◽  

New wheat × barley, wheat × Aegilops biuncialis and wheat × rye hybrids were produced with the aim of alien gene transfer from these species into wheat. Amphiploids were produced with the help of colchicine treatment from the last two combinations. The new wheat × barley hybrids were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Wheat-barley chromosome pairing was detected using genomic in situ hybridization (GISH) in two combinations (Mv9 kr1 × Igri, Asakazekomugi × Manas). In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants. Five wheat-barley translocations were produced in a wheat background and characterized through the combination of cytogenetic and molecular genetic approaches (GISH, FISH and SSR markers). The following translocations were identified: 2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL, 4D-5HS and 7DL.7DS-5HS. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and interspecific translocation breakpoints and the centromere as physical landmarks.  Disomic wheat-Aegilops biuncialis additions were produced after backcrossing the wheat-Ae. biuncialis amphiploids. Fluorescence in situ hybridization (FISH) was carried out using two repetitive DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its two diploid progenitor species to detect chromosome polymorphism. The 7M and 3M disomic chromosome additions were selected and five more lines still need to be characterized.  The octoploid triticale (Mv9 kr1 × Lovászpatonai) produced in Martonvásár was crossed with a 1RS.1BL wheat cultivar Matador. GISH analysis detected pairing between the 1RS arm of the translocation chromosome and that of Lovászpatonai rye in 32 % of the pollen mother cells, making it possible to select recombinants from this combination. The new recombinants between the 1RS of Petkus and the 1RS of Lovászpatonai rye cultivars are being analysed with the help of microsatellite markers.

2008 ◽  
Vol 25 (3) ◽  
pp. 283-287
Author(s):  
CHRISTINA PETTAN-BREWER ◽  
LI FU ◽  
SAMIR S. DEEB

Many attempts have been made over the years to distinguish human and primate L (long-wavelength sensitive) from M (middle-wavelength sensitive) cone photoreceptors using either immunohistochemistry or in situ hybridization. These attempts have been unsuccessful due to the very high degree of identity between the sequences of the L and M proteins and encoding mRNAs. The recent development of chemically modified oligonucleotide probes, referred to as locked nucleic acid (LNA) probes, has shown that they hybridize with much greater affinity and specificity to the target nucleic acid. This has greatly increased the potential for differentiating L from M cones by in situ hybridization. We have designed LNA oligonucleotide probes that are complementary to either the L or M coding sequences located in exon 5 of the Macaca nemestrina L and M pigment genes. We have shown that the LNA-M and LNA-L probes hybridize specifically to their respective target nucleic acid sequences in vitro. This result strongly suggests that these probes would be instrumental in rapidly distinguishing L from M cone in the entire retina, and in defining the cone mosaic during development and in adults.


Author(s):  
V. M. Gorina ◽  
I. V. Mitrofanova ◽  
O. V. Mitrofanova ◽  
N. P. Lesnikova-Sedoshenko ◽  
S. N. Chirkov

For the fi rst time, the results of studying of varieties and breeding forms of apricot in the gene pool collection of the Nikita Botanical Garden – the National Scientifi c Center of the Russian Academy of Sciences (NBS – NSC) (Yalta, Crimea) on the tolerance to the plum Sharka disease – Plum pox potyvirus (PPV), are presented in the article. The collection includes varieties from diff erent ecological and geographical groups that give us the possibility to present an objective comparative assessment of their susceptibility to phytopathogens. Based on long-term monitoring of the apricot orchards on PPV susceptibility in the collection of NBG-NSC, single aff ected plants were discovered and exterminated. Molecular genetic approaches to apricot breeding for tolerance were demonstrated and PPV tolerant genotypes were selected. According to the results of the research, hybridization was carried out. During the entire period of the research, in order to create genotypes tolerant to PPV, 28 738 fl owers were pollinated and 2 908 hybrid seeds were obtained from which plants were grown. Under in situ and in vitro conditions, new breeding forms tolerant to PPV were obtained. The prospect of biotechnological methods usage for inducing the development of hybrid apricot embryos was shown. The conditions for their culture (trophic, hormonal, and physical) were determined, viable seedlings and plants were obtained in vitro and planted for further adaptation ex vitro and to the open ground. New created plants were evaluated and breeding forms were selected, characterized by tolerance to PPV, good fruit quality and high stable yield. Based on the comprehensive studies, two breeding forms of apricot (‘97 -11 ’and ’97-17’) tolerant to PPV and promising for breeding and commercial cultivation were identifi ed.


2020 ◽  
Vol 13 (6) ◽  
pp. 41-49
Author(s):  
A. A. Sokol ◽  
◽  
◽  

The aim of the\* study was to estimate the properties of the scaffold obtained by decellularization of bovine pericardium with a 0.1% solution of sodium dodecyl sulfate. The experiment included standard histological, microscopic, molecular genetic, and biomechanical methods. Scaffold was tested in vitro for cytotoxicity and in vivo for biocompatibility. A high degree of removal of cells and their components from bovine pericardium-derived matrix was shown. Biomechanical characteristics of artificial scaffold were the same as those of the native pericardium. With prolonged contact, no cytotoxic effect on human cells was observed. The biointegration of the scaffold in laboratory animals tissues was noted, which confirms the potential possibility of the implant applicationin cardiac surgery.


Genome ◽  
2011 ◽  
Vol 54 (10) ◽  
pp. 795-804 ◽  
Author(s):  
A. Cseh ◽  
K. Kruppa ◽  
I. Molnár ◽  
M. Rakszegi ◽  
J. Doležel ◽  
...  

A spontaneous interspecific Robertsonian translocation was revealed by genomic in situ hybridization (GISH) in the progenies of a monosomic 7H addition line originating from a new wheat ‘Asakaze komugi’ × barley ‘Manas’ hybrid. Fluorescence in situ hybridization (FISH) with repetitive DNA sequences (Afa family, pSc119.2, and pTa71) allowed identification of all wheat chromosomes, including wheat chromosome arm 4BS involved in the translocation. FISH using barley telomere- and centromere-specific repetitive DNA probes (HvT01 and (AGGGAG)n) confirmed that one of the arms of barley chromosome 7H was involved in the translocation. Simple sequence repeat (SSR) markers specific to the long (L) and short (S) arms of barley chromosome 7H identified the translocated chromosome segment as 7HL. Further analysis of the translocation chromosome clarified the physical position of genetically mapped SSRs within 7H, with a special focus on its centromeric region. The presence of the HvCslF6 gene, responsible for (1,3;1,4)-β-d-glucan production, was revealed in the centromeric region of 7HL. An increased (1,3;1,4)-β-d-glucan level was also detected in the translocation line, demonstrating that the HvCslF6 gene is of potential relevance for the manipulation of wheat (1,3;1,4)-β-d-glucan levels.


Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1238-1247 ◽  
Author(s):  
E D Nagy ◽  
M Molnár-Láng ◽  
G Linc ◽  
L Láng

Five wheat–barley translocations in a wheat background were characterized through the combination of cytogenetic and molecular genetic approaches. The wheat chromosome segments involved in the translocations were identified using sequential GISH and two-colour FISH with the probes pSc119.2 and pAs1. The barley chromatin in these lines was identified using SSR markers. A total of 45 markers distributed over the total barley genome were selected from a recently published linkage map of barley and tested on the translocation lines. The following translocations were identified: 2DS.2DL–1HS, 3HS.3BL, 6BS.6BL–4HL, 4D–5HS, and 7DL.7DS–5HS. Wheat–barley disomic and ditelosomic addition lines for the chromosomes 3HS, 4H, 4HL, 5H, 5HL, and 6HS were used to determine the correct location of 21 markers and the position of the centromere. An intragenomic translocation breakpoint was detected on the short arm of the barley chromosome 5H with the help of SSR marker analysis. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and the interspecific translocation breakpoints, as well as the centromere, as physical landmarks.Key words: wheat-barley translocations, sequential GISH and FISH, SSR markers, physical mapping.


2021 ◽  
Vol 74 (4) ◽  
pp. 815-820
Author(s):  
Nataliia V. Shchotkina ◽  
Anatoliy A. Sokol ◽  
Oleksandr Yu. Galkin ◽  
Glib I. Yemets ◽  
Liudmyla V. Dolinchuk ◽  
...  

The aim: To investigate the effectiveness of using low concentrations of sodium dodecyl sulfate (SDS) and cross-linking with EDC/NHS in the decellularization process to create a potential bioimplant for cardiac surgery. Materials and methods: Pericardial sacs were derived from 12-18 months bulls. Tissue decellularization was performed by using 0.1% SDS with the following EDC/NHS cross-linking. The experiment included standard histological, microscopic, molecular genetic and biomechanical methods. Scaffold was tested in vitro for cytotoxicity and biocompatibility. Results: A high degree of extracellular decellularized matrix purification from cells and their components was shown. Structure-function properties remained similar to those or even improved after the decellularization. During prolonged contact of BP with human fibroblasts, no cytotoxic effect was observed. The biointegration of the scaffold in laboratory animals tissues was noted confirming the potential possibility of the implant use in cardiac surgery. Conclusions: Decellularization of BP by 0.1 % SDS with NHS/EDC cross-linking is promising in manufacturing of the tissue-engineered materials in cardiac surgery.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


Sign in / Sign up

Export Citation Format

Share Document