Vitrification of biopsied mouse embryos

2005 ◽  
Vol 53 (1) ◽  
pp. 103-112 ◽  
Author(s):  
B. Baranyai ◽  
Sz. Bodó ◽  
◽  

Solid surface vitrification (SSV) was compared with in-straw vitrification for cryopreservation of biopsied mouse embryos. Eight-cell stage embryos were zona drilled and one blastomere was removed. Developed morulae or blastocysts were vitrified in microdrop (35% EG + 5% PVP + 0.4 M trehalose) or in straw (7.0 M EG + 0.5 M sucrose). Following recovery, embryos were cultivated in vi tro or transferred into recipients. Cryopreservation had an effect not only on the survival of biopsied embryos but also on their subsequent development in vitro. Cryosurvival of biopsied morulae vitrified in straw was significantly inferior to SSV. The post-warm development of biopsied and non-biopsied morulae was delayed on Day 3.5 and 4.5 in both vitrification groups. A delay in development was observed on Day 5.5 among vitrified non-biopsied blastocysts. The percentage of pups born from biopsied morulae or blastocysts following cryopreservation did not differ from that of the control. No significant differences could be detected between methods within and between embryonic stages in terms of birth rate. The birth rate of biopsied embryos vitrified in straw was significantly lower compared to the non-biopsied embryos. The novel cryopreservation protocol of SSV proved to be effective for cryopreservation of morula- and blastocyst-stage biopsied embryos.

Development ◽  
1985 ◽  
Vol 88 (1) ◽  
pp. 209-217
Author(s):  
Janet L. Wiebold ◽  
Gary B. Anderson

2- to 4-cell and morula- to blastocyst-stage mouse embryos were cultured for 1 h in tritiated leucine at two specific activities and their subsequent development followed in vitro and in vivo (after transfer to recipients), respectively. 2- to 4-cell embryos that incorporated an average of 42 d.p.m. per embryo were impaired in their ability to develop to the morula and blastocyst stage. Recipients receiving morulae and blastocysts that had incorporated an average of 384 d.p.m. per embryo failed to produce young. Reduction of the specific activity improved the viability of embryos both in vitro and in vivo but development was still less than that of unlabelled embryos. Protein degradation curves were different for both 2- to 4-cell and morulato blastocyst-stage embryos labelled at the two different specific activities. Most studies using tritiated amino acids have employed higher specific activities than those used here and they may have to be reevaluated due to the possibility of radiation-induced artifacts.


1995 ◽  
Vol 29 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Th. Rülicke ◽  
P. Autenried

Approximately 18% of cryopreserved 2-cell mouse embryos of 26 different batches showed various degrees of morphological damage after the freeze-thaw process. Normal and damaged morphology were assessed by light microscopy and the ability of an embryo to develop in vitro to a blastocyst, or to develop to term, after transfer to foster mothers. Using vital stains such as Fluorescein-diacetate (FDA) and 4',6-Diamidino-2-Phenylindole (DAPI) it was found that in approximately 82% of the cases, both of the 2 blastomeres of the cryopreserved embryos survived the freeze-thaw process; in 10% only one cell survived the process; and in 8% none survived. Normally, only intact 2-cell embryos are considered for transfer. Here it was shown that over 60% of the partially damaged embryos developed in vitro to the blastocyst stage and, of those, 26% developed to term after transfer to suitable foster mothers. Although the inner cell mass (ICM) appeared to remain smaller during culture after the transfer of partially damaged 2-cell stage embryos, no difference during gestation period was found compared with intact embryos.


2008 ◽  
Vol 56 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Chang-Liang Yan ◽  
Qi-En Yang ◽  
Guang-Bin Zhou ◽  
Yun-Peng Hou ◽  
Xue-Ming Zhao ◽  
...  

The present study was designed to investigate the cryotolerance of in vitro fertilised (IVF) mouse embryos at various preimplantation developmental stages. IVF mouse embryos were vitrified by the open-pulled straw (OPS) method. After warming, embryos were morphologically evaluated and assessed by their development to blastocysts, hatched blastocysts or term. The results showed that a high proportion (93.3–100.0%) of vitrified embryos at all developmental stages were morphologically normal after recovery. The developmental rate of vitrified 1-cell embryos to blastocyst (40.0%) or hatched blastocyst (32.7%) or term (9.3%) was significantly lower than that from other stages (P < 0.05). Vitrified embryos from 2-cell to early blastocyst stage showed similar blastocyst (71.8–89.5%) and hatched blastocyst rates (61.1–69.6%) and could develop to term without a significant loss of survival compared with those of fresh embryos (P > 0.05). Vitrified 2-cell embryos showed the highest survival rate in vivo (50.6%, 88/174), compared with that from other stages (9.3–30.5%, P < 0.05). The data demonstrate that the OPS method is suitable for the cryopreservation of IVF mouse embryos from 2-cell stage to early blastocyst stage without a significant loss of survival. Embryos at the 2-cell stage had the best tolerance for cryopreservation in the present study.


2006 ◽  
Vol 18 (2) ◽  
pp. 125
Author(s):  
M. Fahrudin ◽  
K. Kikuchi ◽  
N. W. K. Karja ◽  
M. Ozawa ◽  
T. Somfai ◽  
...  

The combination of bulk enucleation and zona-free cloning will offer simplification of the conventional nuclear transfer technique. A bulk enucleation method such as enucleation by centrifugation could reduce the time of manipulation that is necessary for removing genetic materials from the oocytes. The present study was conducted to examine the ability of cytoplasts obtained by centrifugation of zona-free in vitro maturation (IVM) porcine oocytes to support remodeling of the somatic cell nucleus and the subsequent development in vitro of somatic cell nuclear transferred (SCNT) embryos. A primary culture of cumulus cells was used as the source of donor cells, and recipient cytoplasts were derived from IVM oocytes that were cultured for 48 h, denuded of zonae pellucidae, and subjected to gradient centrifugation in Percoll solution to separate the ooplasm into fragments. Fragments were stained with Hoechst-33342 and cytoplasts were selected under an epifluorescence microscope. Then two or three cytoplasts were aggregated with a single somatic cell in phytohemagglutinin solution (500 �g/mL). Fusion between somatic cell and cytoplasts was induced by two DC pulses of 1.5 kV/cm for 20 �s, and activation was accomplished by two DC pulses of 0.8 kV/cm for 30 �s at 1 h after fusion in 0.28 M mannitol solution supplemented with 0.05 mM CaCl2 and 0.1 mM MgSO4. The resultant embryos were transferred to a WOW culture system (Vajta et al. 2000 Mol. Reprod. Dev. 55, 256-264) and cultured in glucose-free NCSU-37 containing 4 mg/mL BSA supplemented with 0.17 mM sodium pyruvate and 2.73 mM sodium lactate from Days 0 to 2; from Days 2 to 7 they were cultured in NCSU-37 supplemented with 5.55 mM {D}-glucose and 5% FCS. Some of the reconstructed embryos were fixed at 1, 10, and 24 h after activation and stained with 1% (w/v) orcein to display the morphology of the transferred somatic nuclei. The results showed that 53.6% (30/56) of the SCNT embryos underwent premature chromosome condensation at 1 h, 90.9% (50/55) formed pseudo-pronuclei at 10 h, and 21% (19/90) of them cleaved to the two-cell stage at 24 h after the activation. The development to the blastocyst stage of the embryos that were reconstructed by quartet cells (three cytoplasts and one somatic cell; 8.9%, 10/112) was significantly higher (P < 0.05) than that of the triplet ones (2.2%, 3/139). However, these blastocyst rates were significantly lower (P < 0.05) than the blastocyst development rate of parthenogenetic embryos with the intact zonae pellucidae (28.3%, 17/60). These results suggest that (1) cytoplasts obtained by gradient centrifugation could support reprogramming of somatic cells and in vitro development of SCNT embryos to the blastocyst stage, and (2) the volume of cytoplasts apparently affects their in vitro development in pigs.


2004 ◽  
Vol 16 (2) ◽  
pp. 246 ◽  
Author(s):  
D. Tesfaye ◽  
K. Wimmers ◽  
M. Gilles ◽  
S. Ponsuksili ◽  
K. Schellander

A comparative analysis of mRNA expression patterns between embryos produced under different in vitro and in vivo culture systems allows the isolation of genes associated with embryo quality and investigation of the effect of culture environment on the embryonic gene expression. In this study, expression analysis of four known (PSCD2, TCF7L2, NADH-subunit and PAIP1) genes and one novel transcript, derived from differential display PCR, was performed in in vitro (Ponsuksili et al., 2002, Theriogenology 57, 1611–1624) or in vivo- (Moesslacher et al., 2001 Reprod. Dom. Anim. 32, 37) produced bovine 2-, 4-, 8-, 16-cell, morula and blastocyst stage embryos using real time PCR technology. Poly(A) RNA was isolated from four separate individual embryos from each developmental stage and embryo group (in vitro or in vivo) using Dynabeads mRNA kit (Dynal, Oslo, Norway). After reverse transcription, quantitative PCR was performed with sequence specific primers in an ABI PRISM® 7000 Sequence Detection System instrument (Applied Biosystems, Foster City, CA, USA) using SYBR® Green as a double-strand DNA-specific fluorescent dye. Standard curves were generated for target and endogenous genes using serial dilutions of plasmid DNA. Final quantification was done using the relative standard curve method, and results were reported as relative expression or n-fold difference to the calibrator cDNA (i.e., the blastocyst stage) after normalization with the endogenous control (Histone2a). Data were analyzed using SAS version 8.0 (SAS Institute Inc., NC, USA) software package. Analysis of variance was performed with the main effects being the developmental stage and embryo source (in vitro or in vivo) and their interactions followed by multiple pairwise comparisons using Tukey’s test. No significant difference was observed in the relative abundance of the PSCD2 gene between the two embryo groups. However, its expression was higher (20-fold) (P&lt;0.05) at the 8-cell stage than the other developmental stages among in vitro embryos. Higher expression (P&lt;0.05) of NADH-subunit mRNA was detected in vivo than in vitro at the 2-cell stage of development. The TCF7L2 mRNA was expressed in the in vitro embryos but not in the in vivo ones. PAIP1 mRNA was higher (P&lt;0.05) in in vitro (1500-fold) than in the in vivo embryos (500-fold) at the 2-cell developmental stage compared to the calibrator. The novel transcript was also detected at higher level (P&lt;0.05) in the in vitro than in the in vivo embryos at the 2-cell stage of development. However, the PAIP1 and the novel transcript showed no significant difference in their expression between the two embryo groups beyond the 2-cell developmental stage. Both PAIP1 and the novel transcript were detected only up to 8-cell stage in both embryo groups, suggesting their maternal origin. In conclusion, the variations in the expression of studied genes between in vitro and in vivo may reflect the effect of the two culture systems on the transcriptional activity of early embryos.


1993 ◽  
Vol 5 (3) ◽  
pp. 271 ◽  
Author(s):  
C Roberts ◽  
C O'Neill ◽  
L Wright

Preimplantation mouse embryos were used to determine whether the reported significant increase in embryo metabolism and viability achieved through supplementation of the culture medium with the ether phospholipid 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocoline (platelet activating factor, PAF) is attributable to an enhanced rate of mitosis. Blastocyst-stage embryos cultured in the presence of 0.186 to 18.6 microM exogenous PAF had a significantly (P < 0.01) higher mitotic index (the proportion of cells arrested in metaphase following incubation in colchicine) than those cultured without PAF. At the 8-cell stage, 29% more blastomeres were in metaphase in the PAF-treated group (P < 0.01) 8 h after the addition of colchicine, but by 16 h there was no difference between groups; thus, PAF increased the rate at which cells entered metaphase but did not increase the total number. The mitotic index showed a negative correlation with the number of cells within blastocysts. PAF had a significantly (P < 0.01) greater impact on the mitotic index of blastocysts with fewer cells. The action of PAF was specific, being completely blocked by the PAF-receptor antagonist WEB 2086 (33 microM). In the absence of exogenous PAF the mitotic index was lower with WEB 2086 than without, suggesting inhibition of the action of endogenous embryo-derived PAF. These results show that PAF stimulates the rates at which cells within the preimplantation mouse embryo enter metaphase in vitro and suggest that it would decrease their doubling time, perhaps accounting for the embryotrophic actions of PAF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marino Maemura ◽  
Hiroaki Taketsuru ◽  
Yuki Nakajima ◽  
Ruiqi Shao ◽  
Ayaka Kakihara ◽  
...  

AbstractIn multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


Development ◽  
1970 ◽  
Vol 23 (3) ◽  
pp. 693-704
Author(s):  
Patricia Bowman ◽  
Anne McLaren

About 80 % of 8-cell mouse eggs developed to the blastocyst stage in culture, whether the zona pellucida was left intact, or removed with pronase (pre-incubated and dialysed) and the eggs then cultured singly or as fused pairs. When pronase was used without prior incubation and dialysis, the success rate was reduced to 50 %. After transfer to uterine foster-mothers, 20–30 % of apparently normal blastocysts cultured with or without the zona, singly or fused, developed into live foetuses, compared with over 50 % of control blastocysts taken directly from the uterus. Some of the excess mortality of cultured embryos took place before implantation and some soon after. The foetuses derived from cultured blastocysts averaged 0·1 g lighter than those derived from control uterine blastocysts similarly transferred. No differences in the weights of the placentae were observed. Foetal and placental weights were unaffected by whether the eggs had been cultured singly or fused, implying that growth regulation of fused embryos is complete by the 17th day of gestation. The longer the eggs were maintained in culture, the lower was their viability after transfer, and the lighter were the foetuses derived from them.


Zygote ◽  
1996 ◽  
Vol 4 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Hiroyuki Tateno ◽  
Yujiroh Kamiguchi

SummaryTo enhance potential use of the Chinese hamster, Cricetulus griseus, in developmental and cytogenetic studies of mammalian gametes and embryos, techniques for in vitro fertilisation and embryo culture were developed in the species. Spermatozoa were recovered from the vasa deferentia of mature males, and incubated in modified TYH medium for 1 h at 37°C under 5% CO2 in air. They were then treated with ionophore A23187 (20¼M) for 10min to induce the acrosome reaction. Following ionophore treatment, superovulated oocytes were collected from hormonally stimulated females and incubated with the acrosome-reacted spermatozoa for 2 h at 37°C under 5% CO2 in air. In this study, 245 oocytes ova (98.0%) were determined to be monospermic. The monospermic ova were then cultured in TYH supplemented with 1mM hypotaurine under the same gas phase. Within 30h of fertilisation, 182 ova (93.8%) cleaved to the 2-cell stage, and subsequently 163 ova (84.0%) developed beyond the 2-cell stage. Thus, obstinate developmental arrest at the 2-cell stage(‘2-cell block’) was not observed in this species. Ultimately, 65.5% of monospermic ova reached morula to blastocyst stages.


Development ◽  
1983 ◽  
Vol 78 (1) ◽  
pp. 43-51
Author(s):  
Horst Spielmann ◽  
Robert P. Erickson

The recently improved firefly luciferase assay was used to determine ATP, ADP or AMP in single preimplantation mouse embryos from crosses yielding lethal t12/t12 embryos. Normal values of the three adenylate ribonucleotides were found in freshly collected 2-cell and 4-cell embryos and during in vitro culture to the blastocyst stage. A decrease in adenylate ribonucleotide content was seen in putative t12/t12 embryos only when they were degenerating.


Sign in / Sign up

Export Citation Format

Share Document