A sensitivity analysis on the electron transport within zinc oxide and its device implications

MRS Advances ◽  
2016 ◽  
Vol 1 (40) ◽  
pp. 2777-2782 ◽  
Author(s):  
Poppy Siddiqua ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTZinc oxide has recently been touted as a material that may prove useful for high-power and high-frequency electron device applications. Unfortunately, at the present moment at least, zinc oxide’s electron transport results are based upon material parameter selections that remain disputed, i.e., their exact values have yet to be satisfactorily resolved. In order to establish how the expected range of disputed material parameter values influence the corresponding electron transport results, this paper assesses the sensitivity of the electron transport results associated with zinc oxide to variations in these disputed material parameters. The disputed material parameters that we focus on for the purposes of this particular analysis include the non-parabolicity coefficient associated with the lowest energy conduction band valley, the conduction band inter-valley energy separation, and the effective mass associated with the electrons in the upper energy conduction band valleys. For the purposes of this analysis, steady-state electron transport results are the focus of this sensitivity analysis, the velocity-field characteristic associated with zinc oxide being the principal metric of concern. We find that increases in the non-parabolicity coefficient associated with the lowest energy conduction band valley lead to increases in the peak field of the velocity-field characteristic and initially an increase and then a decrease in the peak electron drift velocity of this material. Increases in the conduction band inter-valley energy separation are instead found to result in increases in the peak field and concomitant increases in the peak electron drift velocity. Finally, increases in the effective mass associated with the electrons in the upper energy conduction band valleys are found to lead to a sharpening of the slope of the velocity-field characteristic in the region beyond the peak field, greater effective mass leading to a greater magnitude slope. Based on the magnitude of these variations, we conclude that zinc oxide may indeed be considered as a material for high-power and high-frequency electron device applications even when the variations in these disputed material parameters have been accounted for.

MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2627-2632 ◽  
Author(s):  
Poppy Siddiqua ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe examine how stress has the potential to shape the character of the electron transport that occurs within ZnO. In order to narrow the scope of this analysis, we focus on a determination of the velocity-field characteristics associated with bulk wurtzite ZnO. Monte Carlo simulations of the electron transport are pursued for the purposes of this analysis. Rather than focusing on the impact of stress in of itself, instead we focus on the changes that occur to the energy gap through the application of stress, i.e., energy gap variations provide a proxy for the amount of stress. Our results demonstrate that stress plays a significant role in shaping the form of the velocity-field characteristics associated with ZnO. This dependence could potentially be exploited for device application purposes.


1966 ◽  
Vol 44 (11) ◽  
pp. 2709-2714 ◽  
Author(s):  
J. C. Woolley

The anomalous high-temperature Hall data for GaSb are explained in terms of the effect of electrons in the [Formula: see text] conduction-band minima. By making reasonable assumptions about the mobility and effective mass of these electrons, values are determined for the zero-temperature energy separation of the [Formula: see text] and [Formula: see text] conduction-band minima and the temperature coefficient of the energy separation.


2014 ◽  
Vol 1674 ◽  
Author(s):  
Walid A. Hadi ◽  
Erfan Baghani ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe examine the electron transport that occurs within a zinc-oxide-based two-dimensional electron gas using Monte Carlo simulations. The sensitivity of the results to variations in the lowest energy conduction band valley electron effective mass is examined. Increased values of the electron effective mass result in diminished electron drift velocities and reduced sensitivity to the free electron concentration. In agreement with our previous studies for a fixed value of the electron effective mass [11], we find that the reduced scattering due to the screening of the impurity and polar optical scattering leads to a slightly higher mobility of the 2DEG at low-fields but reduces the peak velocity, since gaining a higher energy due to the reduced polar optical phonon scattering enhances the effects of the non-parabolicity within this material.


2012 ◽  
Vol 112 (12) ◽  
pp. 123722 ◽  
Author(s):  
Walid A. Hadi ◽  
Shamsul Chowdhury ◽  
Michael S. Shur ◽  
Stephen K. O'Leary

2020 ◽  
Vol 60 (3) ◽  
Author(s):  
Aurimas Čerškus ◽  
Steponas Ašmontas ◽  
Kazimieras Petrauskas ◽  
Algirdas Sužiedėlis ◽  
Jonas Gradauskas ◽  
...  

This paper presents a study of the photoluminescence properties of hybrid perovskite films deposited on titanium and magnesium zinc oxide films, as electron transport layers, using the spin-coating technique. The subject of the investigation was continuous wave photoluminescence versus temperature, excitation power and transient photoluminescence. Moreover, the paper discusses possible carrier recombination mechanisms. Complex temporal decay was approximated through the use of several models, but only the four-exponent model and the model using the sum of two hyperbolic functions provided a good agreement with the experimental data. The first attempt to replace titanium dioxide with magnesium zinc oxide in conjunction with the perovskite layer showed improved optical properties such as a weaker non-radiative recombination process and a longer decay time constant.


Author(s):  
Debdeep Jena ◽  
Mingda Li ◽  
Nan Ma ◽  
Wan Sik Hwang ◽  
David Esseni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document