scholarly journals First determination of dissolution rates of oriented UO2 single crystals

MRS Advances ◽  
2020 ◽  
Vol 5 (1-2) ◽  
pp. 19-26
Author(s):  
S. BERTOLOTTO ◽  
S. SZENKNECT ◽  
S. LALLEMAN ◽  
R. PODOR ◽  
L. CLAPAREDE ◽  
...  

Abstract:Millimetre UO2 single crystals were cut and oriented at JRC Karlsruhe. The orientation of each face of the parallelepiped single crystals was determined with Laue diffraction and the corresponding surface area by geometric measurements. Then, the (111), (100), (110) faces of each single crystal were polished to optical grade and characterized by XRD in order to confirm the surface orientation. The dissolution of the three single crystals was achieved in nitric acid media under dynamic conditions, at room temperature. Two dissolution regimes were observed for all samples. The normalized dissolution rate measured in the first step was not influenced by the crystallographic orientation of the faces. However, during the second step, (110) oriented faces were found to dissolve 4 times faster than the (100) faces. One explanation could involve the atomic composition of each oriented surface in the fluorite-type structure

2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2015 ◽  
Vol 70 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

AbstractThe new compounds LiK[C(CN)3]2 and Li[C(CN)3]·½ (H3C)2CO were synthesized and their crystal structures were determined. Li[C(CN)3]·½ (H3C)2CO crystallizes in the orthorhombic space group Ima2 (no. 46) with the cell parameters a=794.97(14), b=1165.1(2) and c=1485.4(3) pm, while LiK[C(CN)3]2 adopts the monoclinic space group P21/c (no. 14) with the cell parameters a=1265.7(2), b=1068.0(2) and c=778.36(12) pm and the angle β=95.775(7)°. Single crystals of K[C(CN)3] were also acquired, and the crystal structure was refined more precisely than before corroborating earlier results.


2006 ◽  
Vol 510-511 ◽  
pp. 842-845 ◽  
Author(s):  
Noriko Bamba ◽  
Kentaro Kato ◽  
Toshinori Taishi ◽  
Takayuki Hayashi ◽  
Keigo Hoshikawa ◽  
...  

Langasite (La3Ga5SiO14: denoted by LGS) single crystal is one of the lead free piezoelectric materials with high piezoelectricity that is maintained up to its melting point (1470°C). Although LGS single crystals have usually been grown by Czochralski (CZ) method in oxygen contained atmosphere to prevent evaporation of Ga, they were grown by the vertical Bridgman (VB) method in Ar atmosphere without oxygen, and their properties were evaluated in this work. Transparent and colorless LGS single crystals were successfully obtained without Ga evaporation by the VB method in Ar atmosphere, and their resistivity at room temperature was much higher than that grown by conventional CZ method. Piezoelectric constant d11 of the crystal grown by the VB method was 6 x 10-12 C/N, which was close to that of the crystal grown by CZ method. The colorless transparent LGS single crystal turned to orange and its resistivity decreased by annealing in air. Since an orange-colored transparent LGS single crystal has been grown by conventional CZ method, this indicates that color change and the resistivity decrease of LGS crystal is caused by extra interstitial oxygen atoms in the crystal.


2005 ◽  
Vol 38 (4) ◽  
pp. 678-684 ◽  
Author(s):  
Balder Ortner

A method for the X-ray determination of lattice-plane distances is given. Similar to Bond's method, it is based on the measurement of rocking curves, with some advantages and disadvantages compared with the former method. The new method is especially designed for single-crystal stress measurement. Its usefulness is demonstrated in two examples of lattice-constant and stress measurement.


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


2004 ◽  
Vol 449-452 ◽  
pp. 985-988
Author(s):  
S.M. Lee ◽  
J.W. Shur ◽  
T.I. Shin ◽  
W.S. Yang ◽  
G.Y. Kim ◽  
...  

[MnO2(1.0mol%) : Tb4O7(0.5mo%)] doped stoichiometric LiNbO3 (Mn:Tb:SLN) single crystals of 0.5~1.0 mm in diameter and 30~35 mm in length were grown by micro pulling down(µ-PD) method. We investigated the photoluminescence (PL) properties of Mn:Tb:SLN single crystal. The OH- absorption band of the single crystals observed infrared the absorption spectra by using an FT-IR spectrophotometer at room temperature. Homogeneous distributions of Mn and Tb concentration were confirmed by the EPMA and observed defects by optical microscopy.


1963 ◽  
Vol 7 ◽  
pp. 107-116
Author(s):  
Y. A. Konnan

AbstractThe determination of the orientation of a single crystal by Laue X-ray photographs is dependent on the identification of the indices of the spots. At the present time, the determination of indices is done by various methods, none of which is entirely systematical. A method for establishing the indices of the spots which avoids a trial-and-error approach is described here. The method is graphical, uses a specially compiled table of erystallographic angles and is not dependent on the complexity of the structure of the crystal or its symmetry. An example of the cubic system is included. With more complex crystal structures the method becomes very laborious and the help of computer methods is suggested.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 95-98 ◽  
Author(s):  
K.-H. Ebeling ◽  
R. Eder ◽  
E. Hagn ◽  
E. Zech ◽  
M. Deicher

The techniques of quadrupole-interaction nuclear-orientation and quadrupole-interaction-resolvedNMR on oriented nuclei were applied to radioactive 111In (T1/2 = 2.8 d), 198Au(T1/2= 2.7 d) and 199Au (T1/2 = 3.1 d), mass-separator-implanted into single crystals of hep Coand hep Gd. For 111InGd the quadrupole interaction was observed via the broadening of theresonance and the dependence of the effective quadrupole interaction on the angle θbetween thec-axis of the single crystal and the direction of magnetization. For 198AuGd the large electric fieldgradient known from the literature could not be confirmed. For 198AuCo and 199AuCo thequadrupole substructure has been resolved, and the electric field gradient of Au in hep Co was determined to be -0.84(4) x 1017V/cm2. The magnetic hyperfine fields of Au in hep and fee Codiffer by about 20%. These experiments have shown that hep Co may be a good host matrix forthe determination of the quadrupole interaction of heavy radioactive nuclei with resonanceprecision.


1997 ◽  
Vol 478 ◽  
Author(s):  
T. M. Tritt ◽  
M. L. Wilson ◽  
R. L. Littleton ◽  
C. Feger ◽  
J. Kolis ◽  
...  

AbstractWe have measured the resistivity and thermopower of single crystals as well as polycrystalline pressed powders of the low-dimensional pentatelluride materials: HfTe5 and ZrTe5. We have performed these measurements as a function of temperature between 5K and 320K. In the single crystals there is a peak in the resistivity for both materials at a peak temperature, Tp where Tp ≈ 80K for HfTe5 and Tp ≈ 145K for ZrTe5. Both materials exhibit a large p-type thermopower around room temperature which undergoes a change to n-type below the peak. This data is similar to behavior observed previously in these materials. We have also synthesized pressed powders of polycrystalline pentatelluride materials, HfTe5 and ZrTe5. We have measured the resistivity and thermopower of these polycrystalline materials as a function of temperature between 5K and 320K. For the polycrystalline material, the room temperature thermopower for each of these materials is relatively high, +95 μV/K and +65 μV/K for HfTe5 and ZrTe5 respectively. These values compare closely to thermopower values for single crystals of these materials. At 77 K, the thermopower is +55 μV/K for HfTe5 and +35 μV/K for ZrTe5. In fact, the thermopower for the polycrystals decreases monotonically with temperature to T ≈ 5K, thus exhibiting p-type behavior over the entire range of temperature. As expected, the resistivity for the polycrystals is higher than the single crystal material, with values of 430 mΩ-cm and 24 mΩ-cm for Hfre5 and ZrTe5 respectively, compared to single crystal values of 0.35 mΩ-cm (HfTe5) and 1.0 mΩ-cm (ZrTe5). We have found that the peak in the resistivity evident in both single crystal materials is absent in these polycrystalline materials. We will discuss these materials in relation to their potential as candidates for thermoelectric applications.


Sign in / Sign up

Export Citation Format

Share Document