scholarly journals Novel Antimicrobial Surfaces to Defeat COVID-19 Transmission

MRS Advances ◽  
2020 ◽  
Vol 5 (56) ◽  
pp. 2839-2851
Author(s):  
Rodica Cristescu ◽  
Roger J. Narayan ◽  
Douglas B. Chrisey

AbstractAntimicrobial surface coatings function as a contact biocide and are extensively used to prevent the growth and transmission of pathogens on environmental surfaces. Currently, scientists and researchers are intensively working to develop antimicrobial, antiviral coating solutions that would efficiently impede/stop the contagion of COVID-19 via surface contamination. Herein we present a flavonoid-based antimicrobial surface coating fabricated by laser processing that has the potential to eradicate COVID-19 contact transmission. Quercetin-containing coatings showed better resistance to microbial colonization than antibiotic–containing ones.

2020 ◽  
Author(s):  
Luisa A. Ikner ◽  
Valerie Beck ◽  
Patrica M. Gundy ◽  
Charles P Gerba

Liquid-based disinfection of environmental surfaces is a momentary intervention while the recontamination of these surfaces is continuous. In between disinfection cycles, contaminated surfaces remain a potential source of infection. The use of continuously active antimicrobial surface coatings would reduce the risk of transmission between routine cleaning and liquid disinfection events by serving as an always-on approach to reduce pathogen burden. We have recently reported on a surface coating having antiviral properties. Here, the spectrum of activity was broadened assessment efficacy of the coating to withstand multiple contamination events against viruses and pathogenic bacteria.


Prosthesis ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 25-52
Author(s):  
Pelin Erkoc ◽  
Fulden Ulucan-Karnak

Biocontamination of medical devices and implants is a growing issue that causes medical complications and increased expenses. In the fight against biocontamination, developing synthetic surfaces, which reduce the adhesion of microbes and provide biocidal activity or combinatory effects, has emerged as a major global strategy. Advances in nanotechnology and biological sciences have made it possible to design smart surfaces for decreasing infections. Nevertheless, the clinical performance of these surfaces is highly depending on the choice of material. This review focuses on the antimicrobial surfaces with functional material coatings, such as cationic polymers, metal coatings and antifouling micro-/nanostructures. One of the highlights of the review is providing insights into the virus-inactivating surface development, which might particularly be useful for controlling the currently confronted pandemic coronavirus disease 2019 (COVID-19). The nanotechnology-based strategies presented here might be beneficial to produce materials that reduce or prevent the transmission of airborne viral droplets, once applied to biomedical devices and protective equipment of medical workers. Overall, this review compiles existing studies in this broad field by focusing on the recent related developments, draws attention to the possible activity mechanisms, discusses the key challenges and provides future recommendations for developing new, efficient antimicrobial and antiviral surface coatings.


2018 ◽  
Vol 6 (1) ◽  
pp. 9-24 ◽  
Author(s):  
Yuancheng Li ◽  
Yaolin Xu ◽  
Candace C. Fleischer ◽  
Jing Huang ◽  
Run Lin ◽  
...  

Various anti-biofouling surface coating materials for nanoparticles have been reviewed for the reduction of their non-specific interactions with biological systems.


2021 ◽  
Vol 1032 ◽  
pp. 84-90
Author(s):  
Ou Chuan Lin ◽  
Ying Luo Zhou ◽  
Jing Li ◽  
Virgil Bunyan

In this paper, a composite micromachining process is introduced. By adjusting the surface microstructure, a composite coating with two kinds of materials with different characteristics was fabricated. Carbon steel is used as the substrate material, and laser processing is used to obtain the micro morphology on the substrate surface. nanoSiC particles were selected as one of the coating materials, and the SiC coating was added through the process of micropore induced nanoparticles self-assembly. Ni was selected as another coating material and added by electrodeposition. This processing method can be used to prepare multifunctional surface coating, combining the characteristics of different materials. This work can provide an idea to create more excellent multifunctional surfaces.


2018 ◽  
Vol 33 (5) ◽  
pp. 725-740 ◽  
Author(s):  
Monica Echeverry-Rendon ◽  
Valentina Duque ◽  
David Quintero ◽  
Sara M Robledo ◽  
Martin C Harmsen ◽  
...  

The optimal mechanical properties render magnesium widely used in industrial and biomedical applications. However, magnesium is highly reactive and unstable in aqueous solutions, which can be modulated to increase stability of reactive metals that include the use of alloys or by altering the surface with coatings. Plasma electrolytic oxidation is an efficient and tuneable method to apply a surface coating. By varying the plasma electrolytic oxidation parameters voltage, current density, time and (additives in the) electrolytic solution, the morphology, composition and surface energy of surface coatings are set. In the present study, we evaluated the influence on surface coatings of two solute additives, i.e. hexamethylenetetramine and mannitol, to base solutes silicate and potassium hydroxide. Results from in vitro studies in NaCl demonstrated an improvement in the corrosion resistance. In addition, coatings were obtained by a two-step anodization procedure, firstly anodizing in an electrolyte solution containing sodium fluoride and secondly in an electrolyte solution with hexamethylenetetramine and mannitol, respectively. Results showed that the first layer acts as a protective layer which improves the corrosion resistance in comparison with the samples with a single anodizing step. In conclusion, these coatings are promising candidates to be used in biomedical applications in particular because the components are non-toxic for the body and the rate of degradation of the surface coating is lower than that of pure magnesium.


RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60206-60214 ◽  
Author(s):  
Xiumei Jiang ◽  
Yanfang Li ◽  
Ying Liu ◽  
Chunying Chen ◽  
Menglin Chen

The biocompatibility and cell adhesion properties of mussel inspired polydopamine and polynorepinephrine surface coatings on PCL fibers for human mesenchymal and human induced pluripotent stem cell derived mesenchymal stem cells were investigated.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Hao Lei ◽  
Rachael M. Jones ◽  
Yuguo Li

Abstract Background Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. Methods In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions – whole room cleaning and wipe cleaning of touched surfaces – were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Results Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Conclusions Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted cleaning of high-touch surfaces, such as by a wipe or cloth containing disinfectant.


1987 ◽  
Vol 24 (3) ◽  
pp. 446-452 ◽  
Author(s):  
V. R. Parameswaran

Results of tests to determine the adfreezing strength of freshwater ice to piles having different surface characteristics show that adfreeze strength increases with increase in the rate of displacement and loading of the pile. Surface coatings such as creosote on wood piles and paint and silicone sealer on metallic piles drastically decrease the adfreezing strength of ice. Key words: adfreezing strength, displacement rate, ice, loading rate, model piles, surface coating.


2019 ◽  
pp. 404-410
Author(s):  
A. Chiriac ◽  
Georgiana Ion ◽  
G. Stan ◽  
T. Popescu ◽  
Mihaela Sofronie ◽  
...  

Endovascular treatment of intracranial aneurysms with intracranial stents was proven to be clinically safe and effective, but is still associated with a risk of thromboembolic complications. Stent thrombosis could be a sever complication associated with specific stent surface coatings and designs. Standardized in vitro tests for investigation of thrombogenicity induced by different nanomaterials were used as the basic method in carrying out the present study. Therefore, the aim of this study was to evaluate the thrombogenicity of three different nanomaterials (ZnO, TiO2 si Fe3O4) possible used as surface coating for intracranial stents. This study is based on a procedure for in vitro analyses of plasma coagulation time. To measure the plasma coagulation time, platelet-poor plasma from human whole blood was in vitro exposed to nanoparticles and analysed in prothrombin (PT) and activated partial thromboplastin (APTT).


Author(s):  
Gnanasekar Sathishkumar ◽  
Gopinath Kasi ◽  
Kai Zhang ◽  
En-Tang Kang ◽  
Liqun Xu ◽  
...  

Medical devices and surgical implants are a necessary part of tissue engineering and regenerative medicines. However, the biofouling and microbial colonization on the implant surface continues to be a major...


Sign in / Sign up

Export Citation Format

Share Document