scholarly journals The dependence of heavy-ion-induced adhesion on energy loss and time

1986 ◽  
Vol 1 (2) ◽  
pp. 231-233 ◽  
Author(s):  
R.G. Stokstad ◽  
P.M. Jacobs ◽  
I. Tserruya ◽  
L. Sapir ◽  
G. Mamane

The ability of heavy-ion beams to enhance the adhesion of thin metallic films to substrates has been studied as a function of projectile species. Measurements of the adhesion enhancement of a thin gold film to substrates of tantalum and silicon (with native oxides) have been made for beams of 12C, 16O, 28Si, 35Cl, and 58Ni at 2.85 MeV/nucleon. The threshold dose required to pass the Scotch tape peel test was found for the Au-Ta system to be D th (cm−2) = 1017 (dE / dx)−3±0.2 where dE/dx is the electronic stopping power (MeV mg−1 cm−2) of the ion in Au. For the Au-Si system, Dth = 6×1018 (dE/dx)−4.1±0.3. The steep dependence of D th on dE/dx found here is in contrast with an earlier measurement for the Au-Ta system by Tombrello et al. The adhesion enhancement was observed to decrease with time after the bombardment in a manner suggesting that diffusion of atoms through the gold film is important. The possible importance of small concentrations of extraneous atoms at the interface is discussed.

1994 ◽  
Vol 66 (1-3) ◽  
pp. 231-234 ◽  
Author(s):  
N. Nath ◽  
O.P. Dahinwal ◽  
A. Bhagwat ◽  
D.K. Avasthi ◽  
V. Harikumar ◽  
...  

2003 ◽  
Vol 797 ◽  
Author(s):  
Koichi Awazu ◽  
Makoto Fujimaki ◽  
Yoshimichi Ohki ◽  
Tetsuro Komatsubara

ABSTRACTWe have developed a nano-micro structure fabrication method in rutile TiO2 single crystal by use of swift heavy-ion irradiation. The area where ions heavier than Cl ion accelerated with MeV-order high energy were irradiated was well etched by hydrofluoric acid, by comparison etching was not observed in the pristine TiO2 single crystal. Noticed that the irradiated area could be etched to a depth at which the electronic stopping power of the ion decayed to a value of 6.2keV/nm. We also found that the value of the electronic stopping power was increased, eventually decreased against depth in TiO2 single crystal with, e.g. 84.5MeV Ca ion. Using such a beam, inside of TiO2 single crystal was selectively etched with 20% hydrofluoric acid, while the top surface of TiO2 single crystal subjected to irradiation was not etched. Roughness of the new surface created in the single crystal was within 7nm with the atomic forth microscopy measurement.


1993 ◽  
Vol 126 (1-4) ◽  
pp. 181-184 ◽  
Author(s):  
E. Paumier ◽  
A. Audouard ◽  
F. Beuneu ◽  
C. Dufour ◽  
J. Dural ◽  
...  

1984 ◽  
Vol 37 ◽  
Author(s):  
R. P. Livi ◽  
S. Paine ◽  
C. R. Wie ◽  
M. H. Mendenhall ◽  
J. Y. Tang ◽  
...  

AbstractThin gold films over GaAs wafers with different dopants (Cr, Si, Te, and Zn) were used to study the role of he substrate electronic properties in the electrical contact and adhesion modification induced by MeV/nucleon heavy ion bombardment. The enhanced adhesion was studied using a scratch test; the results show very different modifications of adhesion depending on the bulk electronic properties of the substrate. The sample with a Cr compensation doped substrate showed enhancement in adhesion for beam doses as low as 1012 ions/cm2, but Si and Te doped (n–type) substrates showed a sudden enhancement in adhesion for doses around 1014 ions/cm2. Samples with Si and Te doped substrates were used to sudy the bombarding ion dE/dx dependence of the induced adhesion for 19F and 35C1 ions with electronic stopping power ranging from 161 eV/Å to 506 eV/Å. In this range the dose threshold fgfjhe ops! of induced adhesion has a power law dependence, D = D0(dE/dx)− (1.90 ± 1.0)


2020 ◽  
Vol 22 (4) ◽  
pp. 409-414
Author(s):  
Duy Ngoc Nguyen ◽  
Nguyen Nhu Le ◽  
Nguyen Kim Uyen

Energy loss straggling was found to be critical in evaluating the energy reaction using heavy-ion beams during the early stage of experiments at accelerator facilities. Despite a significant attempt in simulating this quantity using computer codes such as LISE++ and SRIM, there still exists a discrepancy between experimental data and computed results. In this study, we provide a greatly improved precision of estimations using the LISE++ code by evaluating the energy loss straggling of the alpha particles at 5.486 MeV in Tb, Ta, and Au materials. After comparing with the observables, it was found that the ratio of the energy loss straggling computed by the LISE++ code to that measured in experiments has a fairly large range of 1.5 - 3.0. For this reason, the so-called modified LISE++ calculation is constructed by adding the adjusting parameters into the original estimation to minimize the uncertainty of the straggling prediction. The modified calculation has shown dramatic improvements in computed energy loss straggling, which are almost similar to those obtained in the measurements, of 5.486-MeV alphas in the aforementioned materials with the atomic numbers in a range of Z = 65 – 79.


2020 ◽  
Vol 7 (11) ◽  
pp. 200925
Author(s):  
Natalia E. Koval ◽  
Fabiana Da Pieve ◽  
Emilio Artacho

Motivated by the radiation damage of solar panels in space, firstly, the results of Monte Carlo particle transport simulations are presented for proton impact on triple-junction Ga 0.5 In 0.5 P/GaAs/Ge solar cells, showing the proton projectile penetration in the cells as a function of energy. It is followed by a systematic ab initio investigation of the electronic stopping power (ESP) for protons in different layers of the cell at the relevant velocities via real-time time-dependent density functional theory calculations. The ESP is found to depend significantly on different channelling conditions, which should affect the low-velocity damage predictions, and which are understood in terms of impact parameter and electron density along the path. Additionally, we explore the effect of the interface between the layers of the multilayer structure on the energy loss of a proton, along with the effect of strain in the lattice-matched solar cell. Both effects are found to be small compared with the main bulk effect. The interface energy loss has been found to increase with decreasing proton velocity, and in one case, there is an effective interface energy gain.


2000 ◽  
Vol 650 ◽  
Author(s):  
S.J. Zinkle ◽  
J.W. Jones ◽  
V.A. Skuratov

ABSTRACTCross-section transmission electron microscopy was used to investigate the microstructure of single crystal silicon carbide and polycrystalline silicon nitride and aluminum nitride following room temperature irradiation with either 245 MeV Kr or 710 MeV Bi ions. The fluences ranged from 1×1012/cm2 (single track regime) to 1×1013/cm2. Ion track formation was observed in the Bi ion-irradiated Si3N4 specimen in regions where the electronic stopping power exceeded a critical value of ∼15 keV/nm (depths <24 μm). Ion track formation was not observed at any depth in 245 MeV Kr ion-irradiated Si3N4, in which the maximum electronic stopping power was 14.5 keV/nm. There was no evidence for track formation in either SiC or AlN irradiated with 710 MeV Bi ions, which indicates that the threshold electronic stopping power for track formation in these two ceramics is >34 keV/nm. The high resistance of SiC and AlN to track formation may be due to their high thermal conductivity, but further study is needed to quantitatively evaluate the suitability of the various track formation models.


Sign in / Sign up

Export Citation Format

Share Document