Microstructure of Swift Heavy Ion Irradiated SiC, Si3N4 and AlN

2000 ◽  
Vol 650 ◽  
Author(s):  
S.J. Zinkle ◽  
J.W. Jones ◽  
V.A. Skuratov

ABSTRACTCross-section transmission electron microscopy was used to investigate the microstructure of single crystal silicon carbide and polycrystalline silicon nitride and aluminum nitride following room temperature irradiation with either 245 MeV Kr or 710 MeV Bi ions. The fluences ranged from 1×1012/cm2 (single track regime) to 1×1013/cm2. Ion track formation was observed in the Bi ion-irradiated Si3N4 specimen in regions where the electronic stopping power exceeded a critical value of ∼15 keV/nm (depths <24 μm). Ion track formation was not observed at any depth in 245 MeV Kr ion-irradiated Si3N4, in which the maximum electronic stopping power was 14.5 keV/nm. There was no evidence for track formation in either SiC or AlN irradiated with 710 MeV Bi ions, which indicates that the threshold electronic stopping power for track formation in these two ceramics is >34 keV/nm. The high resistance of SiC and AlN to track formation may be due to their high thermal conductivity, but further study is needed to quantitatively evaluate the suitability of the various track formation models.

1998 ◽  
Vol 540 ◽  
Author(s):  
S.J. Zinkle ◽  
Hj. Matzke ◽  
V.A. Skuratov

AbstractPlan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl2O4) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1×1016/m2 (single track regime) to 1×1020/m2. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of ∼35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1×1019/m2. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.


1996 ◽  
Vol 438 ◽  
Author(s):  
S. J. Morris ◽  
B. Obradovic ◽  
S.-H. Yang ◽  
A. F. Tasch ◽  
L. Rubin

AbstractAn electronic stopping power model for boron, arsenic, and phosphorus ion implantation into single-crystal Si is reported over the energy range from a few keV to several MeV, for both offand on-axis implant angles relative to the <100> crystallographic direction. Combined with previously developed models for damage accumulation, this model allows physically-based simulation of 3-D profiles over an extremely wide range of implant conditions. In particular, this allows modeling of MeV implants which are being used more and more frequently.


1995 ◽  
Vol 389 ◽  
Author(s):  
S.-H. Yang ◽  
S. Morris ◽  
S. Tian ◽  
K. Parab ◽  
A. F. Tasch ◽  
...  

ABSTRACTIn this paper is reported the development and implementation of a new local electronic stopping model for arsenic ion implantation into single-crystal silicon. Monte Carlo binary collision (MCBC) models are appropriate for studying channeling effects since it is possible to include the crystal structure in the simulators. One major inadequacy of existing MCBC codes is that the electronic stopping of implanted ions is not accurately and physically accounted for, although it is absolutely necessary for predicting the channeling tails of the profiles. In order to address this need, we have developed a new electronic stopping power model using a directionally dependent electronic density (to account for valence bonding) and an electronic stopping power based on the density functional approach. This new model has been implemented in the MCBC code, UT-MARLOWE The predictions of UT-MARLOWE with this new model are in very good agreement with experimentally-measured secondary ion mass spectroscopy (SIMS) profiles for both on-axis and off-axis arsenic implants in the energy range of 15-180 keV.


1996 ◽  
Vol 439 ◽  
Author(s):  
S. J. Morris ◽  
B. Obradovic ◽  
S. -H. Yang ◽  
A. F. Tasch ◽  
L. Rubin

AbstractAn electronic stopping power model for boron, arsenic, and phosphorus ion implantation into single-crystal Si is reported over the energy range fr'om a few keV to several MeV, for both offand on-axis implant angles relative to the <100> crystallographic direction. Combined with previously developed models for damage accumulation, this model allows physically-based simulation of 3-D profiles over an extremely wide range of implant conditions. In particular, this allows modeling of MeV implants which are being used more and more frequently.


Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Author(s):  
Eric O'Quinn ◽  
Cameron Tracy ◽  
William F. Cureton ◽  
Ritesh Sachan ◽  
Joerg C. Neuefeind ◽  
...  

Er2Sn2O7 pyrochlore was irradiated with swift heavy Au ions (2.2 GeV), and the induced structural modifications were systematically examined using complementary characterization techniques including transmission electron microscopy (TEM), X-ray diffraction...


2000 ◽  
Vol 622 ◽  
Author(s):  
Liang-Yu Chen ◽  
Gary W. Hunter ◽  
Philip G. Neudeck

ABSTRACTSingle crystal silicon carbide (SiC) has such excellent physical, chemical, and electronic properties that SiC based semiconductor electronics can operate at temperatures in excess of 600°C well beyond the high temperature limit for Si based semiconductor devices. SiC semiconductor devices have been demonstrated to be operable at temperatures as high as 600°C, but only in a probe-station environment partially because suitable packaging technology for high temperature (500°C and beyond) devices is still in development. One of the core technologies necessary for high temperature electronic packaging is semiconductor die-attach with low and stable electrical resistance. This paper discusses a low resistance die-attach method and the results of testing carried out at both room temperature and 500°C in air. A 1 mm2 SiC Schottky diode die was attached to aluminum nitride (AlN) and 96% pure alumina ceramic substrates using precious metal based thick-film material. The attached test die using this scheme survived both electronically and mechanically performance and stability tests at 500°C in oxidizing environment of air for 550 hours. The upper limit of electrical resistance of the die-attach interface estimated by forward I-V curves of an attached diode before and during heat treatment indicated stable and low attach-resistance at both room-temperature and 500°C over the entire 550 hours test period. The future durability tests are also discussed.


Sign in / Sign up

Export Citation Format

Share Document