Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques

1986 ◽  
Vol 1 (6) ◽  
pp. 845-851 ◽  
Author(s):  
M.F. Doerner ◽  
D.S. Gardner ◽  
W.D. Nix

Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness.

1993 ◽  
Vol 308 ◽  
Author(s):  
S.G.H. Anderson ◽  
I.-S. Yeo ◽  
P.S. Ho ◽  
S. Ramaswami ◽  
R. Cheung

ABSTRACTWafer curvature measurements of a trilayer (SiO2 / AlSiCu / Si) structure are compared to that predicted by a weighted sum of individual measurements of SiO2 and AlSiCu films on Si, and significant differences are found to exist for temperatures above 200°C. A straightforward analysis of the stresses in each layer has been modeled using an extension of a model by Feng et al. which assumes uniform plastic deformation throughout the Al. The modeling results suggest a straightforeward method for determining stresses in deformable thin films that are confined by elastic overlayers. A comparison of the stress-temperature behavior for unpassivated and passivated AlSiCu films reveals that the confined films exhibit less plastic deformation and both higher tension and compression during thermal cycling.


2000 ◽  
Vol 648 ◽  
Author(s):  
D. Tsamouras ◽  
G. Palasantzas ◽  
J. Th. M. De Hosson ◽  
G. Hadziioannou

AbstractGrowth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ∝ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.


1996 ◽  
Vol 436 ◽  
Author(s):  
Y. S. Kang ◽  
P. S. Ho ◽  
R. Knipe ◽  
J. Tregilgas

AbstractThe mechanical behavior of the metal film on a polymer substrate becomes an important issue in microelectronics metallization. The metal/polymer structure is also useful to investigate the deformation behavior of very thin free-standing metal film since the flexible polymer serves as a deformable substrate. The tensile force-elongation curves have been measured using a microtensile tester for aluminum thin films, deposited on a PMDA-ODA polyimide film, in the thickness range from 60 rum to 480 nm. The stress-strain curves for aluminum films were constructed by subtracting these curves with polyimide curves measured separately. Tensile strength increases linearly with decreasing film thickness from 196 MPa to 408 MPa within the film thickness range studied. This is in good agreement with the published data for free-standing aluminum films in the same thickness range. The measured Young's modulus is lower than the bulk modulus and exhibits no systematic dependence on the film thickness. The microstructures of aluminum films have been examined using a transmission electron microscope (TEM). These films posses the (111)-textured columnar grain structures. Grain sizes exhibit log-normal distributions and the mean grain size increases monotonically with the film thickness. An attempt is made to evaluate the effect of film thickness and grain size on the strength of aluminum thin film and the result is discussed.


2002 ◽  
Vol 750 ◽  
Author(s):  
A. A. Elmustafa ◽  
M. F. Tambwe ◽  
D. S. Stone

ABSTRACTActivation volumes for plastic deformation of fcc metals are measured using nanoindentation. Materials include bulk, polycrystalline aluminum and α-brass, and sputtered copper and nickel thin films on silicon substrates. From a hardness measurement, V* is defined as 9kBT/∂H/∂ln , where H is the hardness and is a representative strain rate beneath the indenter. Data obtained using nanoindentation are consistent with those obtained using more conventional experiments based on uniaxial loading.


1987 ◽  
Vol 108 ◽  
Author(s):  
D. Goyal ◽  
W. Ng ◽  
A. H. King ◽  
J. C. Bilello

ABSTRACTWe have used synchrotron x-ray topographic techniques to study the stresses in thin films formed upon silicon substrates either by evaporation or sputtering. It is found that the film stress generally decreases with increasing film thickness for evaporated films, but film delamination occurs at a well defined film thickness. Transmission electron microscope studies have been performed on the same specimens in order to reveal what mechanisms are involved with the delamination of the films.


1996 ◽  
Vol 118 (2) ◽  
pp. 431-438 ◽  
Author(s):  
B. Wei ◽  
K. Komvopoulos

An experimental investigation of the surface topography, nanoindentation hardness, and nanowear characteristics of carbon thin films was conducted using atomic force and point contact microscopy. Hydrogenated carbon films of thickness 5, 10, and 25 nm were synthesized using a sputtering technique. Atomic force microscopy images obtained with silicon nitride tips of nominal radius less than 20 nm demonstrated that the carbon films possessed very similar surface topographies and root-mean-square roughness values in the range of 0.7–1.1 nm. Nanoindentation and nanowear experiments performed with diamond tips of radius equal to about 20 nm revealed a significant enhancement of the hardness and wear resistance with increasing film thickness. High-resolution surface imaging indicated that plastic flow was the dominant deformation process in the nanoindentation experiments. The carbon wear behavior was strongly influenced by variations in the film thickness, normal load, and number of scanning cycles. For a given film thickness, increasing the load caused the transition from an atomic-scale wear process, characterized by asperity deformation and fracture, to severe wear consisting of plowing and cutting of the carbon films. Both the critical load and scanning time for severe wear increased with film thickness. Below the critical load, the wear rate decreased with further scanning and the amount of material worn off was negligibly small, while above the critical load the wear rate increased significantly resulting in the rapid removal of carbon. The observed behavior and trends are in good qualitative agreement with the results of other experimental and contact mechanics studies.


2002 ◽  
Vol 750 ◽  
Author(s):  
Shuichi Miyabe ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTAluminum nitride (AlN) thin films with different thickness were synthesized by ion-beam assisted deposition on various substrates, Corning 7059 glass, fused silica, Si single crystal, and sapphire, which show the hardness ranging from 7 to 37 GPa. Effects of substrate materials on indentation-hardness of AlN films were studied by using a nanoindentation system equipped with a diamond Berkovich indenter. The maximum force applied to the films was kept at 3 mN. For the films on the Corning 7059 glass substrate, when the normalized penetration depth to the film thickness is 0.98, the film hardness is found to be about 7 GPa, which is close to the hardness of the substrate. While the normalized penetration depth is reduced to 0.11, the film hardness becomes to be about 16 GPa. On the other hand, for the films on the sapphire substrate, when the normalized penetration depth is 0.83, the film hardness is observed to be about 25 GPa, while the normalized penetration depth is reduced to 0.10, the film hardness is found to be about 15 GPa. These results reveal that when the normalized penetration depth to the film thickness is about 0.1, the hardness of the AlN film can be evaluated to be about 15 GPa without being affected by substrate materials.


1994 ◽  
Vol 356 ◽  
Author(s):  
A. Witvrouw ◽  
J. Proost ◽  
B. Deweerdt ◽  
Ph. Roussel ◽  
K. Maex

AbstractSubstrate curvature measurements were used to study stress relaxation in Al-Si-Cu films at temperatures between 45 and 165 °C. Dislocation glide with an average activation energy, resp. athermal flow stress of 1.7 ± 0.2 eV, resp. 600 ± 200 MPa could describe the relaxation data for temperatures up to 120 °C well. Stress relaxation at 92 °C was found to progress much slower in 1 μm wide nitride passivated lines than in thin films or unpassivated lines.


Sign in / Sign up

Export Citation Format

Share Document