Ion implantation, diffusion, and solubility of Nd and Er in LiNbO3

1991 ◽  
Vol 6 (1) ◽  
pp. 134-137 ◽  
Author(s):  
Ch. Buchal ◽  
S. Mohr

We have implanted Nd and Er ions into x- and z-cut LiNbO3 single crystals. Rutherford backscattering spectrometry and channeling shows the recrystallization of the host during annealing and the rare earth diffusion. Nd and Er have different solubilities and different diffusion constants in LiNbO3. The solubility is strongly temperature dependent. The diffusion is substitutional, fastest parallel to c-axis of the LiNbO3 crystal and characterized by an activation energy of approximately 3.6 eV.

1990 ◽  
Vol 201 ◽  
Author(s):  
Ch. Buchal ◽  
R. Brinkmann ◽  
W. Sohler ◽  
H. Suche

AbstractWe have implanted Nd and Er ions into x- and z-cut LiNbC3 single crystals and investigated the recrystallization of the host and the rare earth solubility and diffusion. The diffusion is substitutional, fastest parallel to c-axis and characterized by an activation energy of 3.6 eV. Optical fluorescence experiments of Er3+ in a waveguide configuration show stimulated emission and amplification at 1.53, 1.55 and 1.56 μm wavelength.


2002 ◽  
Vol 17 (11) ◽  
pp. 2960-2965 ◽  
Author(s):  
E. Arushanov ◽  
L. Ivanenko ◽  
D. Eckert ◽  
G. Behr ◽  
U. K. Rößler ◽  
...  

Results of magnetization and magnetic susceptibility measurements on undoped and Co-doped FeSi2.5 single crystals are presented. The temperature dependence of the magnetic susceptibility of the Co-doped sample in the range of 5–300 K can be explained by temperature-dependent contributions due to paramagnetic centers and the carriers excited thermally in the extrinsic conductivity region. The values of the paramagnetic Curie temperature and activation energy of the donor levels were estimated. It is also shown that the magnetic susceptibility of Co-doped samples cooled in zero external field and in a field are different. This resembles the properties of spin-glasses and indicates the presence of coupling between magnetic centers.


2005 ◽  
Vol 892 ◽  
Author(s):  
Katharina Lorenz ◽  
E. Nogales ◽  
R. Nédélec ◽  
J. Penner ◽  
R. Vianden ◽  
...  

AbstractGaN films were implanted with Er and Eu ions and rapid thermal annealing was performed at 1000, 1100 and 1200 °C in vacuum, in flowing nitrogen gas or a mixture of NH3 and N2. Rutherford backscattering spectrometry in the channeling mode was used to study the evolution of damage introduction and recovery in the Ga sublattice and to monitor the rare earth profiles after annealing. The surface morphology of the samples was analyzed by scanning electron microscopy and the optical properties by room temperature cathodoluminescence (CL). Samples annealed in vacuum and N2 already show the first signs of surface dissociation at 1000 °C. At higher temperature, Ga droplets form at the surface. However, samples annealed in NH3 + N2 exhibit a very good recovery of the lattice along with a smooth surface. These samples also show the strongest CL intensity for the rare earth related emissions in the green (for Er) and red (for Eu). After annealing at 1200 °C in NH3+N2 the Eu implanted sample reveals the channeling qualities of an unimplanted sample and a strong increase of CL intensity is observed.


1988 ◽  
Vol 121 ◽  
Author(s):  
B. S. Chiou ◽  
M. Y. Lee ◽  
J. G. Duh

ABSTRACTSynthesized zirconia ceramics are prepared through the coprecipita-tion process. Application of the wet chemical approach is aimed at the achievement of highly sintered ceramics at lower temperature. The thermal evolution of the synthesized CeO2-ZrO2 powder is investigated with the aid of DTA and TGA measurement. The exothermic peaks on the DTA thermogram are futher identified by the IR analysis. The effect of CeO on the occurrence of the peaks is probed. For other rare-earth oxiae doped ceramics, such as Nd2O3. and Dy2O3. containing zirconia, the bulk and grain boundary resistances are evaluated by the impedance spectroscopy. The dependence of the associated activation energy in the rare-earth oxide doped zirconia is discussed with respect to the variation of the ionic radius of the rare earth constituent.


1983 ◽  
Vol 25 ◽  
Author(s):  
E. C. Zingu ◽  
J. W. Mayer

ABSTRACTInterdiffusion in the Si<100>/Pd2Si/Ni and Si<111>/Pd2Si/Ni thin film systems has been investigated using Rutherford backscattering spectrometry. Nickel is found to diffuse along the grain boundaries of polycrystalline Pd2Si upon which it accumulates at the Si<100>Pd2Si interface. The high mobility of Ni compared to that of si suggests that Pd diffuses faster than Si along the Pd2Si grain boundaries. An activation energy of 1.2 eV is determined for Ni grain boundary diffusion in Pd2Si.


1999 ◽  
Vol 150 (1-4) ◽  
pp. 157-160 ◽  
Author(s):  
M. V. Yakushev ◽  
A. N. Varaksin ◽  
I. N. Ogorodnikov ◽  
A. V. Kruzhalov

1993 ◽  
Vol 301 ◽  
Author(s):  
P.N. Favennec ◽  
H. L'haridon ◽  
D. Moutonnet ◽  
M. Salvi ◽  
M. Gauneau

ABSTRACTA review of the main results concerning the ion implantation of the rare-earth elements is given.To obtain the best optical activation of rare-earths, we attempt to optimize the implantation (energy, dose) and annealing (temperature, duration) conditions. The studied materials are Si, II-VI binaries (ZnTe, CdS), III-V binaries (GaAs, InP), III-V ternaries (GaAlAs, GaInAs) and III-V quaternaries (GaInAsP).


1995 ◽  
Vol 396 ◽  
Author(s):  
S.M. Myers ◽  
G.A. Petersen

AbstractThe diffusion of Au in Si and its binding to cavities and to precipitates of the equilibrium Au-Si phase were investigated in the temperature range 1023-1123 K using ion implantation and Rutherford backscattering spectrometry. The diffusivity-solubility product for interstitial Au was found to be about an order of magnitude greater than the extrapolation of previous, indirect determinations at higher temperatures. Chemisorption on cavity walls was shown to be more stable than Au-Si precipitation by 0.1-0.3 eV in the investigated temperature range, indicating that cavities are effective gettering centers for Au impurities.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Kazuyuki Kohama ◽  
Kazuhiro Ito ◽  
Kenichi Mori ◽  
Kazuyoshi Maekawa ◽  
Yasuharu Shirai ◽  
...  

AbstractA new fabrication technique to prepare ultra-thin barrier layers for nano-scale Cu wires was proposed in our previous studies. Ti-rich layers formed at the Cu(Ti)/dielectric-layer interfaces consisted of crystalline TiC or TiSi and amorphous Ti oxides. The primary control factor for Ti-rich interface layer composition was the C concentration in the dielectric layers rather than the formation enthalpy of the Ti compounds. To investigate Ti-rich interface layer growth in Cu(Ti)/dielectric-layer samples annealed in ultra high vacuum, Rutherford Backscattering Spectrometry (RBS) was employed in the present study. Ti peaks were obtained only at the interface for all the samples. Molar amounts of Ti atoms segregated to the interface (n) were estimated from Ti peak areas. The n value was defined by n = Z·exp(-E/RT) · tm, where Z is a preexponential factor and E the activation energy for the reaction. The Z, E, and m values were estimated from plots of log n vs log t and log n vs 1/T. The m values are similar in all the samples. The E values for Ti atoms reacting with the dielectric layers containing carbon (except SiO2) tended to decrease with decreasing C concentration (decreasing k), while reaction rate coefficients (Z·exp(-E/RT)) were insensitive to C concentration in the dielectric layers. These factors lead to conclusion that growth of the Ti-rich interface layers is controlled by chemical reactions of the Ti atoms with the dielectric layers represented by the Z and E values, rather than diffusion in the Ti-rich interface layers.


Sign in / Sign up

Export Citation Format

Share Document