Cobalt disilicide formed by rapid thermal annealing and throughmetal arsenic implantation

1991 ◽  
Vol 6 (9) ◽  
pp. 1892-1899 ◽  
Author(s):  
Edmund P. Burte ◽  
Min Ye

Cobalt disilicide CoSi2 of a specific resistivity of 23 μω was formed by the solid phase reaction of cobalt and silicon in the phase sequence of Co2Si, CoSi, and CoSi2 by use of rapid thermal annealing. The through-metal arsenic implantation caused the mixing of cobalt with the silicon substrate and the formation of cobalt silicides. A significant lateral growth of cobalt silicides was observed in samples subjected to one-step rapid thermal annealing process at 900 °C without through-metal ion implantation. Ion beam mixing reduced this lateral silicide growth efficiently, but resulted in a higher density of cobalt atoms remaining in the silicon oxide film than after rapid thermal annealing, as revealed by vapor phase decomposition atomic absorption spectroscopy.

2021 ◽  
pp. 351-359
Author(s):  
Tatiana Maslakovа ◽  
Alesya Vurasko ◽  
Inna Pervova ◽  
Pavel Maslakov ◽  
Ludmila Aleshina ◽  
...  

The study presented by the authors is devoted to the study of the properties and the possibility of using technical cellulose from non-wood plant raw materials as a solid-phase matrix to obtain solid-phase reactive indicator systems by the following methods: synthesis method on the base of a hetarylformazane immobilized on a cellulose matrix and development of analytical systems based on preconcentration of the determined metal ion by a matrix with subsequent its «revealing» by the formazan («revealing» method). The article focuses on determination of optimal combinations of chromogenic organic reagents (hetarylformazanes) and cellulose-based matrices for developing solid-phase reaction-based indicator systems. Adsorption features of formazan reagents onto cellulose matrices was studied. It has been established the relation between the reagent molecule structure, composition of cellulose matrix and analytical properties of the test-systems synthesized to determine metal ions. Different approaches were developed and applied to reveal the visually observable and easily measured effect due to cellulose properties as well as properties of hetarylformazanes fixed on the surface of the matrix. This fact allows to control sensitivity and selectivity of solid-phase reactive indicator systems for water quality assessment.


1985 ◽  
Vol 54 ◽  
Author(s):  
J. A. Knapp ◽  
S. T. Picraux

ABSTRACTRapid electron beam and lamp heating have been used to form thin epitaxial films of rare-earth suicides by reacting overlayers of the rare earths with (111) Si substrates. Of the metals Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, all but Gd are found to form epitaxial suicide layers by rapid solid-phase reaction, while suicides of Gd, Dy, Tm, Yb and Lu have been formed epitaxially by liquid phase reaction. For all but Er this is the first demonstration of epitaxial growth on Si. Details obtained from ion beam channeling analysis and transmission electron microscopy confirm the expected epitaxial structure and also show that the Si vacancies in the suicide form an ordered superlattice, rather than a random array as had been assumed before.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.


2016 ◽  
Vol 697 ◽  
pp. 510-514 ◽  
Author(s):  
Feng Rui Zhai ◽  
Ke Shan ◽  
Ruo Meng Xu ◽  
Min Lu ◽  
Zhong Zhou Yi ◽  
...  

In the present paper, the ZrB2/h-BN multiphase ceramics were fabricated by SPS (spark plasma sintering) technology at lower sintering temperature using h-BN, ZrO2, AlN and Si as raw materials and B2O3 as a sintering aid. The phase constitution and microstructure of specimens were analyzed by XRD and SEM. Moreover, the effects of different sintering pressures on the densification, microstructure and mechanical properties of ZrB2/h-BN multiphase ceramics were also systematically investigated. The results show that the ZrB2 was obtained through solid phase reaction at different sintering pressures, and increasing sintering pressure could accelerate the formation of ZrB2 phase. As the sintering pressure increasing, the fracture strength and toughness of the sintered samples had a similar increasing tendency as the relative density. The better comprehensive properties were obtained at given sintering pressure of 50MPa, and the relative density, fracture strength and toughness reached about 93.4%, 321MPa and 3.3MPa·m1/2, respectively. The SEM analysis shows that the h-BN grains were fine and uniform, and the effect of sintering pressure on grain size was inconspicuous. The distribution of grain is random cross array, and the fracture texture was more obvious with the increase of sintering pressure. The fracture mode of sintered samples remained intergranular fracture mechanism as sintering pressure changed, and the grain refinement, grain pullout and crack deflection helped to increase the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document