Textures of thin copper films

1998 ◽  
Vol 13 (10) ◽  
pp. 2962-2968 ◽  
Author(s):  
W-M. Kuschke ◽  
A. Kretschmann ◽  
R-M. Keller ◽  
R. P. Vinci ◽  
C. Kaufmann ◽  
...  

The textures of thin copper films were determined quantitatively by measuring (111) pole figures with x-ray diffraction. Measurements were performed on a variety of samples, differing in copper film thickness and deposition technique, diffusion barrier material, and the presence or absence of a cap layer. Texture changes due to an annealing treatment were also recorded and correlated with stress measurements by the wafer-curvature technique. It is found that the deposition method (PVD vs CVD) has a strong effect on texture, barrier layer effects range from negligible to significant depending on the barrier material, and the effect of a cap layer is insignificant.

1999 ◽  
Vol 562 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

ABSTRACTSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


2005 ◽  
Vol 475-479 ◽  
pp. 3721-3724
Author(s):  
W.L. Wang ◽  
K.J. Liao ◽  
Jian Zhang ◽  
P. Yu ◽  
G.B. Liu

In this paper, the optical properties and structure of CdS films were investigated by SEM, X-ray diffraction, and x-ray photoelectron spectroscopy. The CdS films in this study were deposited on the plane transparent glass by chemical bath deposition technique. The experimental results have shown that the annealing treatment has an important effect on the optical properties and structure of CdS films. This may be ascribed to decreasing surface contaminations and oxide content in the films.


1999 ◽  
Vol 564 ◽  
Author(s):  
Michelle Chen ◽  
Suraj Rengarajan ◽  
Peter Hey ◽  
Yezdi Dordi ◽  
Hong Zhang ◽  
...  

AbstractSelf-annealing properties of electroplated and sputtered copper films at room temperature were investigated in this study, in particular, the effect of copper film thickness, electrolyte systems used, as well as their level of organic additives for electroplating. Real-time grain growth was observed by transmission electron microscopy. Sheet resistance and X-ray diffraction measurements further confirmed the recrystallization of the electroplated copper film with time. The recrystallization of electroplated films was then compared with that of sputtered copper films.


2012 ◽  
Vol 433-440 ◽  
pp. 683-688
Author(s):  
Liu Wei Ding ◽  
Hao Ran Geng ◽  
Jing Hua Xu

Cu-38Zn thin film (wt %) was deposited on the unheated microscope glass at the nanometer scale by DC magnetron sputtering. Subsequently, the nanocrystalline films were dealloyed in H2SO4 aqueous solution etching of zinc component, resulting in the formation of nanoscale porous copper film with average porous diameter of approximately 94 nm. The films microstructure and element composition were characterized by X-ray diffraction and scanning electron microscopy. The experimental results show that Cu-38Zn films are quasi-amorphous structure, porous copper film with different porous sizes is prepared by selective dissolution of zinc atoms from a nanocrystalline dual-phase film under free corrosion conditions, the grain size of the Cu-Zn films has an important effect on the dealloying process and the microstructures of the nanoscale copper films.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001358-001388
Author(s):  
Simon Bamberg ◽  
Tobias Bernhard (corresponding author) ◽  
Laurence J. Gregoriades (presenting author) ◽  
Frank Brüning ◽  
Ralf Brüning ◽  
...  

Strain in chemically deposited copper films on polymer substrates was determined by means of in situ X-ray diffraction (XRD), deposit stress analyzer (DSA) and spiral contractometer (SC). The strain evolution of the films was studied as a function of copper film thickness and electroless copper bath parameters, during and after deposition. The results are not indicative of a preferred crystallite orientation or texturing in the deposit. The copper film stress is controllable over a wide range of some 100 MPa from compressive to tensile stress by appropriate variation of bath parameters (e.g. temperature, concentration of bath components such as nickel, stabilizer and formaldehyde). A higher tendency of blister generation for relaxed or compressively stressed films is apparent, which implies that a sufficient level of tensile stress throughout the deposition promotes film adhesion. An observable change from tensile to compressive film stress during the cooling of the sample from bath operation to rinse water temperature is discussed in terms of substrate-induced thermal stress to the copper film. In this context, the difference in the substrate materials required for XRD (polymer), DSA (copper) and SC (stainless steel) may be a significant factor contributing to the diverging measured stress behaviors of the methods. Moreover, it is questionable whether SC stress data can be compared with XRD and DSA stress data, due to the low resolution of the SC method (~60 MPa).


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3663
Author(s):  
Iosif-Daniel Simandan ◽  
Florinel Sava ◽  
Angel-Theodor Buruiana ◽  
Aurelian-Catalin Galca ◽  
Nicu Becherescu ◽  
...  

Ge2Sb2Te5 (GST-225) is a chalcogenide material with applications in nonvolatile memories. However, chalcogenide material properties are dependent on the deposition technique. GST-225 thin films were prepared using three deposition methods: magnetron sputtering (MS), pulsed laser deposition (PLD) and a deposition technique that combines MS and PLD, namely MSPLD. In the MSPLD technique, the same bulk target is used for sputtering but also for PLD at the same time. The structural and optical properties of the as-deposited and annealed thin films were characterized by Rutherford backscattering spectrometry, X-ray reflectometry, X-ray diffraction, Raman spectroscopy and spectroscopic ellipsometry. MS has the advantage of easily leading to fully amorphous films and to a single crystalline phase after annealing. MS also produces the highest optical contrast between the as-deposited and annealed films. PLD leads to the best stoichiometric transfer, whereas the annealed MSPLD films have the highest mass density. All the as-deposited films obtained with the three methods have a similar optical bandgap of approximately 0.7 eV, which decreases after annealing, mostly in the case of the MS sample. This study reveals that the properties of GST-225 are significantly influenced by the deposition technique, and the proper method should be selected when targeting a specific application. In particular, for electrical and optical phase change memories, MS is the best suited deposition method.


2005 ◽  
Vol 495-497 ◽  
pp. 719-724
Author(s):  
R.E. Bolmaro ◽  
B. Molinas ◽  
E. Sentimenti ◽  
A.L. Fourty

Some ancient metallic art craft, utensils, silverware and weapons are externally undistinguishable from modern ones. Not only the general aspect and shape but also some uses have not changed through the ages. Moreover, when just some small pieces can be recovered from archaeological sites, the samples can not easily be ascribed to any known use and consequently identified. It is clear that mechanical processing has changed along history but frequently only a "microscopic" inspection can distinguish among different techniques. Some bronze samples have been collected from the Quarto d’Altino (Veneto) archaeological area in Italy (paleovenetian culture) and some model samples have been prepared by a modern artisan. The sample textures have been measured by X-ray Diffraction techniques. (111), (200) and (220) pole figures were used to calculate Orientation Distribution Functions and further recalculate pole figures and inverse pole figures. The results were compared with modern forging technology results. Textures are able to discern between hammering ancient techniques for sheet production and modern industrial rolling procedures. However, as it is demonstrated in the present work, forgery becomes difficult to detect if the goldsmith, properly warned, proceeds to erase the texture history with some hammering post-processing. The results of this contribution can offer to the archaeologists the opportunity to take into consideration the texture techniques in order to discuss the origin (culture) of the pieces and the characteristic mechanical process developed by the ancient artisan. Texture can also help the experts when discussing the originality of a certain piece keeping however in mind the cautions indicated in this publication.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2011 ◽  
Vol 364 ◽  
pp. 35-39 ◽  
Author(s):  
Salina Muhamad ◽  
Abu Bakar Suriani ◽  
Mohamad Hafiz Mamat ◽  
Rafidah Ahmad ◽  
Mohamad Rusop

Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nanorods grown on Mg0.3Zn0.7O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crytallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nanorods was discussed in further details.


RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14016-14023 ◽  
Author(s):  
Gaomin Zhang ◽  
Bin Xu ◽  
Hui Chong ◽  
Wenxian Wei ◽  
Chengyin Wang ◽  
...  

Quantitative probing of glyphosate by combining electrochemical deposition and X-ray diffraction methods.


Sign in / Sign up

Export Citation Format

Share Document