Rectifying Behavior of Aligned ZnO Nanorods on Mg0.3Zn0.7O Thin Film Template

2011 ◽  
Vol 364 ◽  
pp. 35-39 ◽  
Author(s):  
Salina Muhamad ◽  
Abu Bakar Suriani ◽  
Mohamad Hafiz Mamat ◽  
Rafidah Ahmad ◽  
Mohamad Rusop

Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nanorods grown on Mg0.3Zn0.7O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crytallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nanorods was discussed in further details.

2011 ◽  
Vol 415-417 ◽  
pp. 1755-1759
Author(s):  
Zhen Dong Wang ◽  
Zhen Quan Lai ◽  
Guo Rong Chen

In this study, vertically aligned CuInS2nanorod arrays were successfully fabricated by sulfurization method with porous alumina template, which was used to prepare CuInS2thin film in the reported paper. The nanorod arrays showed the diameters of about 200nm and the length of about 1μm, and highly vertically aligned on the CuInS2thin film, were characterized by scanning electron microscope. The sample was identified as the single chalcopyrite phase and the crystal structure with (112), (200)/(004), (202)/(204) and (116)/(312) atomic planes orientation by Raman scattering and X-ray diffraction, respectively. The Cu: In: S atomic ratio of 1:0.84:1.94 was exhibited in the sample by energy dispersive X-ray spectroscopy.


1989 ◽  
Vol 169 ◽  
Author(s):  
K.M. Hubbard ◽  
P.N. Arendt ◽  
D.R. Brown ◽  
D.W. Cooke ◽  
N.E. Elliott ◽  
...  

AbstractThin films of the Tl‐based superconductors often have relatively poor properties because of film/substrate interdiffusion which occurs during the anneal. We have therefore investigated the use of BaF2 as a diffusion barrier. TICaBaCuO thin films were deposited by dc magnetron sputtering onto MgO <100> substrates, both with and without an evaporation‐deposited BaF2 buffer layer, and post‐annealed in a Tl over‐pressure. Electrical properties of the films were determined by four‐point probe analysis, and compositions were measured by ion‐backscattering spectroscopy. Structural analysis was performed by X‐ray diffraction and scanning electron microscopy. The BaF2 buffer layers were found to significantly improve the properties of the TICaBaCuO thin films.


1990 ◽  
Vol 187 ◽  
Author(s):  
A. Peter Jardine ◽  
Hong Zhang ◽  
Lysa D. Wasielesky

AbstractThin-films of Ni and Ti were formed by sputter co-deposition of Ni and Ti onto amorphous SiO2 and single crystal NaCl and Sapphire substrates. Films were characterized as follows: a) The chemical composition of the films was analysed by EDAX b) The gross morphology was examined by Scanning Electron Microscopy. c) The crystal phases were indentified by X-ray diffraction and Electron diffraction. Intermetallic NiTi has been identified in samples annealed in vacuo at 850°C. Annealing at 500°C in vacuum produced chemical separation of the Ni and Ti. This effect may be due to a narrow solidus region for the existence of NiTi and inhomogeneities due to uneven deposition of the Ni and Ti.


2020 ◽  
Vol 12 (2) ◽  
pp. 254-262
Author(s):  
Kalyani Muninathan ◽  
Emerson Rajamony Navaneetha

At this present task, an attempt done in order to synthesize NiFeCo3O4 ternary thin film electrode by Electrodeposition method. Microstructure of the films studied using X-ray diffraction, energy dispersive X-ray spectroscopy (EDAX) and Field emission (FESEM) scanning electron microscopy. Films Electrochemical property were studied and confirmed with the help of charge discharge techniques using cyclic voltammetry, which confirms that the prepared electrode has excellent electrochemical capacitive behaviour with 757 F g–1 specific capacitance value of at the density in current about 1 mA g–1.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Pola-Albores ◽  
Francisco Paraguay-Delgado ◽  
Wilber Antúnez-Flores ◽  
Patricia Amézaga-Madrid ◽  
Edna Ríos-Valdovinos ◽  
...  

ZnO nanorods were synthesized by induced seeds by chemical bath deposition using hexamethylenetetramine (HMT) as a precipitant agent and zinc nitrate (ZN) as Zn2+source at 90°C. The influence of reactants ratio was studied from 2 to 0.25 ZN/HMT molar. The results obtained by scanning electron microscopy confirm that the diameter of nanorods was affected directly by the concentration of both zinc and OH−sources. Nanotubes (hollow nanorods) were obtained with high HMT concentrations and were turning over nanorods as HMT concentration decreased. Microstructural information was obtained by Rietveld refinement of grazing incidence X-ray diffraction data. These results evidence low-textured materials with oriented volumes less than 18% coming from (101) planes in Bragg condition.


1990 ◽  
Vol 201 ◽  
Author(s):  
Kevin M. Hubbard ◽  
Nicole Bordes ◽  
Michael Nastasi ◽  
Joseph R. Tesmer

AbstractWe have investigated the fabrication of thin-film superconductors by Cu-ion implantation into initially Cu-deficient Y(BaF2)Cu thin films. The precursor films were co-evaporated on SrTiO3 substrates, and subsequently implanted to various doses with 400 keV 63Cu2+. Implantations were preformed at both LN2 temperature and at 380°C. The films were post-annealed in oxygen, and characterized as a function of dose by four-point probe analysis, X-ray diffraction, ion-beam backscattering and channeling, and scanning electron microscopy. It was found that a significant improvement in film quality could be achieved by heating the films to 380°C during the implantation. The best films became fully superconducting at 60–70 K, and exhibited good metallic R vs. T. behavior in the normal state.


2012 ◽  
Vol 724 ◽  
pp. 205-208
Author(s):  
Li Yan Zhang ◽  
Fen Wang ◽  
Jian Feng Zhu

ZnO nanorods were prepared by heat treating of aqueous zinc acetate treated with organic of PVA. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The results indicate that the as synthesized ZnO are hexagonal wurtzite nanorods with the maximum aspect ratio of 10:1 (100 nm in diameter and about 1 μm in length). The morphology of nanorods was formed by the regulation of appropriate organic under a pH value of 8.5. The growth mechanism of ZnO is proposed that the nanocrystals grow along a preferred direction in a growth tunnel provided by organics.


2003 ◽  
Vol 799 ◽  
Author(s):  
Takashi Hirate ◽  
Hironori Tanaka ◽  
Shinya Sasaki ◽  
Makoto Ozawa ◽  
Weichi Li ◽  
...  

ABSTRACTHighly oriented ZnO nanorods have been grown on p--Si(111) wafers using a low-pressure thermal CVD method. X-ray diffraction shows that the nanorods are grown with the c-axis normal to the substrate. An electroluminescent device with ITO/ZnS:Mn/nanorod-ZnO/p--Si structure where the ZnS:Mn and ITO layers are deposited by the electron beam deposition method on the ZnO nanorods layer operates stably in DC mode with high luminance.


2016 ◽  
Vol 30 (35) ◽  
pp. 1650394
Author(s):  
Li Zhang ◽  
Yibao Li ◽  
Zhen Tang ◽  
Yan Deng ◽  
Hui Yuan ◽  
...  

In this paper, all solution processing is used to prepare both the transparent conducting Ba[Formula: see text]La[Formula: see text]SnO3 (BLSO) thin films as bottom electrodes and ferroelectric Bi6Fe2Ti3O[Formula: see text] (BFTO) thin films. The derived BFTO thin films are characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The derived thin film is polycrystalline with dense microstructures. The remnant polarization [Formula: see text] at the measurement frequency of 2 kHz can reach [Formula: see text] under the 500 kV/cm electric field and the coercive field [Formula: see text] is 410 kV/cm. The results will provide a feasible route to prepare BFTO thin films on transparent conducting bottom electrodes to realize multifunctionality.


Sign in / Sign up

Export Citation Format

Share Document