Thin Film Microstructure Control Using Glancing Angle Deposition by Sputtering

1999 ◽  
Vol 14 (4) ◽  
pp. 1197-1199 ◽  
Author(s):  
J. C. Sit ◽  
D. Vick ◽  
K. Robbie ◽  
M. J. Brett

Thin films with microstructures controlled on a nanometer scale have been fabricated using a recently developed process called glancing angle deposition (GLAD) which combines oblique angle evaporation with controlled substrate motion. Critical to the production of GLAD thin films is the requirement for a narrow angular flux distribution centered at an oblique incidence angle. We report here recent work with low-pressure, long-throw sputter deposition with which we have succeeded in fabricating porous titanium thin films possessing “zig-zag,” helical, and “pillar” microstructures, demonstrating microstructural control on a level consistent with evaporated GLAD. The use of sputtering for GLAD simplifies process control and should enable deposition of a broader range of thin film materials.

2000 ◽  
Vol 616 ◽  
Author(s):  
T. Smy ◽  
D. Vick ◽  
M. J. Brett ◽  
S. K. Dew ◽  
A. T. Wu ◽  
...  

AbstractA new fully three dimensional (3D) ballistic deposition simulator 3D-FILMS has been developed for the modeling of thin film deposition and structure. The simulator may be implemented using the memory resources available to workstations. In order to illustrate the capabilities of 3D-FILMS, we apply it to the growth of engineered porous thin films produced by the technique of GLancing Angle Deposition (GLAD).


2000 ◽  
Vol 657 ◽  
Author(s):  
Mary W. Seto ◽  
Brian Dick ◽  
Michael J. Brett

ABSTRACTPorous thin films with helical microstructures were fabricated with the Glancing Angle Deposition technique. These films consisted of arrays of “microsprings” whose geometries could be engineered with nanometer scale control. Some of the mechanical properties of these helically structured films were studied with a nanoindentation technique. Several microscopic “springbed” films were tested over a range of forces using a spherical indenter tip. The geometries of the microsprings were varied, and a number of different materials were used to fabricate these films, which were typically a few micrometers thick. Slanted post arrays, resembling micro-cantilevers, were also subjected to nanoindentation tests. Results of initial experiments, theory, and simulations show that these microstructures behave in a manner analogous to macroscopic springs and cantilevers, and may offer some insight into how materials behave at the microscale.


2013 ◽  
Vol 06 (01) ◽  
pp. 1250051 ◽  
Author(s):  
AURÉLIEN BESNARD ◽  
NICOLAS MARTIN ◽  
FABRICE STHAL ◽  
LUC CARPENTIER ◽  
JEAN-YVES RAUCH

Titanium thin films were deposited by DC magnetron sputtering. The glancing angle deposition (GLAD) method was implemented to prepare two series of titanium films: perpendicular and oriented columnar structures. The first series was obtained with a conventional incident angle α of the sputtered particles (α = 0°), whereas the second one used a grazing incident angle α = 85°. Afterwards, the films were annealed in air using six cycles of temperature ranging from 293 K to 773 K. DC electrical conductivity was measured during the annealing treatment. Films deposited by conventional sputtering (α = 0°) kept a typical metallic-like behavior versus temperature (σ300 K = 2.0 × 106 S m-1 and TCR293 K = 1.52 × 10-3 K-1), whereas those sputtered with α = 85° showed a gradual transition from metal to dielectric. Such a transition was mainly attributed to the high porous structure, which favors the oxidation of titanium films to tend to the TiO2 compound.


2000 ◽  
Vol 636 ◽  
Author(s):  
K.D. Harris ◽  
K.L. Westra ◽  
M.J. Brett

AbstractUsing glancing angle deposition and templating techniques, we have fabricated a number of unique thin film microstructures. Engineered columnar thin films having the inverse of the desired structure (i.e., arrays of helices or chevrons) were first deposited by glancing angle deposition. These films were then filled with a solution of the desired material, and allowed to cure. The template material was then removed by chemical etching, leaving a perforated thin film. Such films have been produced of photoresist and spin-on-glass, on both silicon and glass substrates. The perforations have taken the form of chevrons and helices of large and small pitch, and have been arranged in both random and periodic (1μm spacing) arrays.


2017 ◽  
Vol 49 (1) ◽  
pp. 73-79
Author(s):  
Jelena Potocnik ◽  
Milos Nenadovic ◽  
Bojan Jokic ◽  
Maja Popovic ◽  
Zlatko Rakocevic

In this work, Glancing Angle Deposition technique was used for obtaining nanostructured nickel thin film with vertical posts on glass substrate which was positioned 75 degrees with respect to the substrate normal and rotated with a suitable constant speed. The obtained nickel thin film was characterized by Scanning Electron Microscopy, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy. It was found that the deposited thin film consists of 94.0 at.% of nickel. Magnetic properties of the deposited thin film were determined by Magneto-Optical Kerr Effect Microscopy. According to the obtained coercivity values, it can be concluded that the nickel thin film shows uniaxial magnetic anisotropy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2413
Author(s):  
Yao Shan ◽  
Pian Liu ◽  
Yao Chen ◽  
Haotian Zhang ◽  
Huatian Tu ◽  
...  

Yttrium fluoride (YF3) columnar thin films (CTFs) were fabricated by electron beam evaporation with the glancing angle deposition method. The microstructures and optical properties of YF3 CTFs were studied systematically. The YF3 films grown at different deposition angles are all amorphous. As the deposition angle increases, the columns in YF3 CTFs become increasingly separated and inclined, and the volume fraction of YF3 decreases, resulting in lower refractive indices. This phenomenon is attributed to the self-shadowing effect and limited adatom diffusion. The YF3 CTFs are optically biaxial anisotropic with the long axis (c-axis) parallel to the columns, the short axis (b-axis) perpendicular to the columns, and the other axis (a-axis) parallel to the film interface. The principal refractive index along the b-axis for the 82°-deposited sample is approximately 1.233 at 550 nm. For the 78°-deposited sample, the differences of principal refractive indices between the c-axis and the b-axis and between the a-axis and the b-axis reach the maximum 0.056 and 0.029, respectively. The differences of principal refractive indices were affected by both the deposition angle and the volume fraction of YF3.


Sign in / Sign up

Export Citation Format

Share Document