Synthesis of α–SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate

2001 ◽  
Vol 16 (3) ◽  
pp. 683-686 ◽  
Author(s):  
Z. Q. Liu ◽  
S. S. Xie ◽  
L. F. Sun ◽  
D. S. Tang ◽  
W. Y. Zhou ◽  
...  

Large-scale SiO2 nanowires were synthesized by using a simple but an effective approach at low temperature. Scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy were employed to characterize the samples. The results indicated that SiO2 nanowires with a uniform diameter of about 20 nm and a length up to 10 μm have been synthesized. Photoluminescence measurement showed that the SiO2 nanowires emitted blue light at 2.8 and 3.0 eV. The possible growth process of the SiO2 nanowires is discussed. Using this method, large panels of SiO2 nanowires can be made under conditions that are suitable for device fabrication.

2018 ◽  
Vol 9 ◽  
pp. 1686-1694 ◽  
Author(s):  
Geetanjali Deokar ◽  
Nitul S Rajput ◽  
Junjie Li ◽  
Francis Leonard Deepak ◽  
Wei Ou-Yang ◽  
...  

Densely populated edge-terminated vertically aligned two-dimensional MoS2 nanosheets (NSs) with thicknesses ranging from 5 to 20 nm were directly synthesized on Mo films deposited on SiO2 by sulfurization. The quality of the obtained NSs was analyzed by scanning electron and transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The as-grown NSs were then successfully transferred to the substrates using a wet chemical etching method. The transferred NSs sample showed excellent field-emission properties. A low turn-on field of 3.1 V/μm at a current density of 10 µA/cm2 was measured. The low turn-on field is attributed to the morphology of the NSs exhibiting vertically aligned sheets of MoS2 with sharp and exposed edges. Our findings show that the fabricated MoS2 NSs could have a great potential as robust high-performance electron-emitter material for various applications such as microelectronics and nanoelectronics, flat-panel displays and electron-microscopy emitter tips.


2008 ◽  
Vol 8 (6) ◽  
pp. 3203-3207 ◽  
Author(s):  
Changjie Mao ◽  
Xingcai Wu ◽  
Jun-Jie Zhu

A large number of β-AgVO3 nanowires with diameter of 30–60 nm, and length of 1.5–3 μm have been successfully synthesized by a simple and facile low-temperature sonochemical route. The morphologies and structures of the nanowires were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (SEM), and thermal gravimetric analysis (TGA). Cyclic voltammetry and charge–discharge experiments were applied to characterize the electrochemical properties of the nanowires as cathode materials for lithium-ion batteries. In the initial discharge and charge process, the as-prepared β-AgVO3 nanowires showed the initial charge and discharge capacities of 69 and 102 (mAh)/g, respectively. It is anticipated that the β-AgVO3 nanostructures are promising cathode candidates in the application of primary lithium-ion batteries.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Taher Ghrib ◽  
Muneera Abdullah Al-Messiere ◽  
Amal Lafi Al-Otaibi

ZnO nanowires of approximately 3 µm length and 200 nm diameter are prepared and implanted vertically on substrate glass which is coated with thin layer of ITO which is too covered with bulk ZnO thin layer via electrodeposition process by cyclic voltammetry-chronoamperometry and with a chemical process that is described later; we have synthesized a ZnS nanolayer. ZnO/ZnS core/shell nanowires are formed by ZnO nanowires core surrounded by a very thin layer of porous ZnS shell principally constituted with a crystal which is about 15–20 nm in diameter. In the method, ZnS nanoparticles were prepared by reaction of ZnO nanowires with Na2S in aqueous solution at low temperature and also we have discussed the growth mechanism of ZnO/ZnS nanowires. The morphology, structure, and composition of the obtained nanostructures were obtained by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). For the structure, SEM and XRD measurements indicated that the as-grown ZnO nanowires microscale was of hexagonal wurtzite phase with a high crystalline quality, and TEM shows that the ZnS is uniformly distributed on the surface of the ZnO nanowires.


2018 ◽  
Author(s):  
Hakeem K. Henry ◽  
Sang Bok Lee

The PMo<sub>12</sub>-PPy heterogeneous cathode was synthesized electrochemically. In doing so, the PMo<sub>12</sub> redox-active material was impregnated throughout the conductive polymer matrix of the poly(pyrrole) nanowires. All chemicals and reagents used were purchased from Sigma-Aldrich. Anodized aluminum oxide (AAO) purchased from Whatman served as the porous hard template for nanowire deposition. A thin layer of gold of approximately 200nm was sputtered onto the disordered side of the AAO membrane to serve as the current collector. Copper tape was connected to the sputtered gold for contact and the device was sealed in parafilm with heat with an exposed area of 0.32 cm<sup>2</sup> to serve as the electroactive area for deposition. All electrochemical synthesis and experiments were conducted using a Bio-Logic MPG2 potentiostat. The deposition was carried out using a 3-electrode beaker cell setup with a solution of acetonitrile containing 5mM and 14mM of the phosphomolybdic acid and pyrrole monomer, respectively. The synthesis was achieved using chronoamperometry to apply a constant voltage of 0.8V vs. Ag/AgCl (BASi) to oxidatively polymerize the pyrrole monomer to poly(pyrrole). To prevent the POM from chemically polymerizing the pyrrole, an injection method was used in which the pyrrole monomer was added to the POM solution only after the deposition voltage had already been applied. The deposition was well controlled by limiting the amount of charge transferred to 300mC. Following deposition, the AAO template was removed by soaking in 3M sodium hydroxide (NaOH) for 20 minutes and rinsed several times with water. After synthesis, all cathodes underwent electrochemical testing to determine their performance using cyclic voltammetry and constant current charge-discharge cycling in 0.1 M Mg(ClO<sub>4</sub>)<sub>2</sub>/PC electrolyte. The cathodes were further characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and x-ray photoelectron spectroscopy (XPS).


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


2003 ◽  
Vol 18 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
V. Oliveira ◽  
R. Vilar

This paper aims to contribute to the understanding of column formation mechanisms in Al2O3–TiC ceramics micromachined using excimer lasers. Chemical and structural characterization of columns grown in Al2O3–TiC composite processed with 200 KrF laser pulses at 10 J/cm2 was carried out by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Fully developed columns consist of a core of unprocessed material surrounded by an outer layer of Al2TiO5, formed in oxidizing conditions, and an inner layer, formed in reducing conditions, composed of TiC and Al3Ti or an AlTi solid solution. Possible mechanisms of column formation are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Liu ◽  
Hongtao Yu ◽  
Xie Quan ◽  
Shuo Chen

MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.


Author(s):  
Z. Gu ◽  
L. Du ◽  
J.H. Edgar ◽  
E.A. Payzant ◽  
L. Walker ◽  
...  

AlN-SiC alloy crystals, with a thickness greater than 500 µm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 °C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8° or 3.68°) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm−2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.


2003 ◽  
Vol 18 (10) ◽  
pp. 2359-2363 ◽  
Author(s):  
Hongzhou Gu ◽  
Yunle Gu ◽  
Zhefeng Li ◽  
Yongcheng Ying ◽  
Yitai Qian

Nanoscale hollow spheres of amorphous phosphorus nitride (P3N5) were synthesized by reacting PCl3 with NaN3 at 150–250 °C. Transmission electron microscope images show that the hollow spheres have a diameter of 150–350 nm, and the thickness of the shell is 20 nm. A very small amount of curly films were also found in the sample prepared at 150 °C. The infrared spectrum indicates a high degree of purity. X-ray photoelectron spectroscopy indicates the presence of P and N, with a molar ratio of 1:1.62 for P:N. Ultraviolet-visible absorption spectroscopy shows an absorption band at 265–315 nm. Under photoluminescent excitation at 230 nm, the P3N5 emits ultraviolet light at 305 nm. With a band gap of 4.28 eV, the products may be a wide gap semiconductor. A possible mechanism and the influence of temperature on the formation of the hollow spheres are also discussed.


Sign in / Sign up

Export Citation Format

Share Document