Effects of thermal annealing on the texture of La0.67Sr0.33MnO3 thin films

2001 ◽  
Vol 16 (7) ◽  
pp. 1887-1889 ◽  
Author(s):  
Lamartine Meda ◽  
LaQuita Kennon ◽  
Cristiane Bacaltchuk ◽  
Hamid Garmestani ◽  
Klaus H. Dahmen

Thin films of La0.67Sr0.33MnO3 (LSMO) were prepared at 670 °C on LaAlO3 (LAO) and SrTiO3 (STO) substrates by liquid-delivery metalorganic chemical vapor deposition. X-ray diffraction analysis 2¸/¸ and pole figure scans showed that the films are epitaxial with (001)LSMO//(001)LAO and (001)LSMO//(001)STO. The crystal structure of LSMO/LAO was indexed as face-centered cubic with a double cell and LSMO/STO as simple cubic. Electron microscopy revealed square facets and elongated grain features. Films heat-treated between 700 and 800 °C on LAO resulted in a structural change, while those on STO showed an increase in texture.

2002 ◽  
Vol 748 ◽  
Author(s):  
Keisuke Saito ◽  
Toshiyuki Kurosawa ◽  
Takao Akai ◽  
Shintaro Yokoyama ◽  
Hitoshi Morioka ◽  
...  

ABSTRACT200-nm-thick Pb(Zrx,Ti1-x)O3 (PZT) thin films with zirconium composition in the range from 0% to 65% were epitaxially grown on (001)c SrRuO3 (SRO)//SrTiO3 (STO) single crystal substrates by pulsed metalorganic chemical vapor deposition (pulsed MOCVD). Constituent crystallographic phases were characterized by high-resolution X-ray diffraction reciprocal space mapping. It was found that PZT thin films having zirconium composition from 45% to 60% show mixed tetragonal and pseudocubic phases and their lattice parameters remained constant in this composition range.


2005 ◽  
Vol 902 ◽  
Author(s):  
Yong Kwan Kim ◽  
Shintaro Yokoyama ◽  
Risako Ueno ◽  
Hitoshi Morioka ◽  
Osami Sakata ◽  
...  

AbstractWe performed x-ray diffraction measurements by using highly brilliant synchrotron radiation on epitaxial Pb(Zr0.35Ti0.65)O3 film capacitor structures. Small regions of 300-nm-thick epitaxial Pb(Zr,Ti)O3 thin films with Pt and SrRuO3 top electrodes were measured after applying various numbers of switching cycles of the electric field. Epitaxial Pb(Zr,Ti)O3 thin films were prepared on epitaxial (100)cSrRuO3/(100)SrTiO3 substrates by pulsed-metalorganic chemical vapor deposition. The volume faction of c-domain and remanent polarization was plotted against the number of switching cycles. In the both capacitors, the Vc increased as the switching cycle increased independent of fatigue behavior.


1995 ◽  
Vol 406 ◽  
Author(s):  
M. S. Gaffneyt ◽  
C. M. Reavesl ◽  
A. L Holmes ◽  
R. S. Smith ◽  
S. P. DenBaars

AbstractMetalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. We have developed control strategies that incorporate monitors as real-time control sensors to improve MOCVD growth. An analog control system with an ultrasonic concentration monitor was used to reject bubbler concentration disturbances which exist under normal operation, during the growth of a four-period GaInAs/InP superlattice. Using X-ray diffraction, it was determined that the normally occurring concentration variations led to a wider GaInAs peak in the uncompensated growths as compared to the compensated growths, indicating that closed loop control improved GaInAs composition regulation. In further analysis of the X-ray diffraction curves, superlattice peaks were used as a measure of high crystalline quality. The compensated curve clearly displayed eight orders of satellite peaks, whereas the uncompensated curve shows little evidence of satellite peaks.


1994 ◽  
Vol 361 ◽  
Author(s):  
D.L. Kaiser ◽  
M.D. Vaudin ◽  
L.D. Rotter ◽  
Z.L. Wang ◽  
J.P. Cline ◽  
...  

ABSTRACTMetalorganic chemical vapor deposition (MOCVD) was used to deposit epitaxial BaTiO3 thin films on (100) MgO substrates at 600°C. The metalorganic precursors employed in the deposition experiments were hydrated Ba(thd)2 (thd = C11H19O2) and titanium isopropoxide. The films were analyzed by means of transmittance spectroscopy, wavelength dispersive x-ray spectrometry, secondary ion mass spectrometry depth profiling, x-ray diffraction, high resolution transmission electron microscopy, selected area electron diffraction, nanoscale energy dispersive x-ray spectrometry and second harmonic generation measurements. There was no evidence for interdiffusion between the film and substrate. The x-ray and electron diffraction studies showed that the films were oriented with the a-axis normal to the substrate surface, whereas second harmonic generation measurements showed that the films had some c-axis character.


2007 ◽  
Vol 539-543 ◽  
pp. 1230-1235 ◽  
Author(s):  
Hyoun Woo Kim ◽  
S.H. Shim

We have synthesized the high-density Ga2O3 nanowires on gold (Au)-coated silicon substrates using metalorganic chemical vapor deposition. The nanowires exhibited one-dimensional structures having circular cross sections with diameters in the range of 30-200 nm. The energy dispersive x-ray spectroscopy revealed that the nanowires contained elements of Ga and O, without Au-related impurities. X-ray diffraction analysis and high-resolution transmission electron microscopy showed that the Ga2O3 nanowires were crystalline.


1996 ◽  
Vol 449 ◽  
Author(s):  
Hongqiang Lu ◽  
Malathi Thothathiri ◽  
Ziming Wu ◽  
Ishwara Bhat

ABSTRACTIndium droplet formation during the epitaxial growth of InxGa1-xN films is a serious problem for achieving high quality films with high indium mole fraction. In this paper, we studied the formation of indium droplets on the InxGa1-xN films grown by metalorganic chemical vapor deposition (MOCVD) using single crystal x-ray diffraction. It is found that the indium (101) peak in the x-ray diffraction spectra can be utilized as a quantitative measure to determine the amounts of indium droplets on the film. It is shown by monitoring the indium diffraction peak that the density of indium droplets increases at lower growth temperature. To suppress these indium droplets, a modulation growth technique is used. Indium droplet formation in the modulation growth is investigated and it is revealed in our study that the indium droplets problem has been partially relieved by the modulation growth technique.


1997 ◽  
Vol 482 ◽  
Author(s):  
E. L. Piner ◽  
N. A. El-Masry ◽  
S. X. Liu ◽  
S. M. Bedair

AbstractInGaN films in the 0–50% InN composition range have been analyzed for the occurrence of phase separation. The ñ0.5 jum thick InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) in the 690 to 780°C temperature range and analyzed by θ−20 x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area diffraction (SAD). As-grown films with up to 21% InN were single phase. However, for films with 28% InN and higher, the samples showed a spinodally decomposed microstructure as confirmed by TEM and extra spots in SAD patterns that corresponded to multiphase InGaN. An explanation of the data based on the GaN-InN pseudo-binary phase diagram is discussed.


1993 ◽  
Vol 335 ◽  
Author(s):  
Frank Dimeo ◽  
Bruce W. Wessels ◽  
Deborah A. Neumayer ◽  
Tobin J. Marks ◽  
Jon L. Schindler ◽  
...  

AbstractBi2Sr2CaCu2O8 thin films have been prepared in situ by low pressure metalorganic chemical vapor deposition using fluorinated β–diketonate precursors. The influence of the growth conditions on the oxide phase stability and impurity phase formation was examined as well as the superconducting properties of the films. Thin films deposited on LaAIO3 substrates were epitaxial as confirmed by x-ray diffraction measurements, including θ-2θ and φ scans. Four probe resistivity measurements showed the films to be superconducting with a maximum Tc0 of 90 K without post annealing. This Tc0 is among the highest reported for thin films of the BSCCO (2212) phase, and approaches reported bulk values.


Sign in / Sign up

Export Citation Format

Share Document