Characterization of electroplated Ni/SiC and Ni/Al2O3 composite coatings bearing nanoparticles

2003 ◽  
Vol 18 (7) ◽  
pp. 1566-1574 ◽  
Author(s):  
Sheng-Chang Wang ◽  
Wen-Cheng J. Wei

Ultrafine SiC and Al2O3 particles with 30–50 nm sizes were used to codeposit with Ni in a sulfamate bath to form composite coatings. The microstructure and mechanical properties of the layers were investigated by x-ray diffractometry, scanning and transmission electron microscopy, high-resolution transmission electron microscopy, microindentation, and wear testing. The microstructural results revealed that 7 vol% of SiC or Al2O3 particles dispersed randomly in the Ni matrix. The addition of the ultrafine SiC or Al2O3powder into the Ni matrix apparently reduced the size of Ni grains during the electroplating and inhibited the grain growth during heat treatment. The microhardness and wear resistance were improved by the addition of SiC and Al2O3 particles, especially for SiC/Ni samples after heat treatment at 400 °C for 24 h. The mechanisms of hardening and wearing of Ni-based electroplated layers are discussed.

1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


Author(s):  
X.W. Sun ◽  
C.X. Xu ◽  
B.J. Chen ◽  
Y. Yang

Zinc oxide (ZnO) microtube has been fabricated by heating the mixture of ZnO and graphite powders in the atmosphere. The ZnO microtubes showed perfect hexagonal profiles with bell-mouth or normal hexagonal tops. Both X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) demonstrated that the product was composed of ZnO with typical hexagonal structure grown predominantly along (002) direction. The growth process was interpreted by means of vaporliquid-solid mechanism combining with the evaporation of metallic zinc.


Sign in / Sign up

Export Citation Format

Share Document