Transmission Electron Microscopy and High-Resolution Transmission Electron Microscopy Study of Nanostructure and Metastable Phase Evolution in Pulsed-Laser-Ablation–Deposited Ti–Si Thin Film

2004 ◽  
Vol 19 (4) ◽  
pp. 1118-1125 ◽  
Author(s):  
S. Bysakh ◽  
K. Mitsuishi ◽  
M. Song ◽  
K. Furuya ◽  
K. Chattopadhyay

Thin films with a nominal composition close to Ti62.5Si37.5 were deposited on NaCl substrate at room temperature by pulsed laser ablation to study the evolution of the intermetallic compound Ti5Si3 using a combination of high-resolution and in situ transmission electron microscopy. The as-deposited amorphous films contain Ti-rich clusters, which influence the phase evolution and the decomposition behavior of the amorphous film. These clusters influence the nucleation of a metastable fcc Ti solid solution (ao = 0.433 nm) with composition richer in Ti than Ti62.5Si37.5 as the first phase to crystallize at 773 K. The Ti5Si3 nanocrystals form later, and even at 1073 K they coexist with fine fcc Ti-rich nanocrystals. Subsequent Ar+ ion-milling of the crystallized film results in a loss of silicon. The composition change leads to the dissolution of the Ti5Si3 nanocrystals and evolution of a new metastable Ti-rich fcc phase (ao= 0.408 nm).

1995 ◽  
Vol 10 (4) ◽  
pp. 791-794 ◽  
Author(s):  
S. Stemmer ◽  
S.K. Streiffer ◽  
W-Y. Hsu ◽  
F. Ernst ◽  
R. Raj ◽  
...  

We have used conventional and high-resolution transmission electron microscopy to investigate the microstruture of epitaxial, ferroelectric PbTiO3 films grown by pulsed laser ablation on (001) MgO single crystals, and on MgO covered with epitaxial Pt or SrTiO3. Pronounced variations are found in the widths and lengths of a-axis-oriented domains in these films, although the volume fraction of a-axis-oriented material varies only weakly for the different types of samples. In addition, the films deposited onto Pt-coated MgO have a larger grain size than those deposited onto bare MgO or SrTiO3/MgO. Possible reasons for the variations in the distribution of a-axis-oriented material in these samples include differences in the elastic properties and electrical conductivities of the different substrate combinations.


Author(s):  
Pankaj Koinkar ◽  
Kohei Sasaki ◽  
Tetsuro Katayama ◽  
Akihiro Furube ◽  
Satoshi Sugano

Two dimensional (2D) materials are widely attracting the interest of researchers due to their unique crystal structure and diverse properties. In the present work, tungsten disulfide (WS[Formula: see text] nanorods were synthesized by a simple method of pulsed laser ablation in liquid (PLAL) environment. The prepared WS2 are analyzed by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis) and Raman spectroscopy to confirm the surface morphology, phase and structure. A possible growth mechanism of WS2 is proposed. This study indicates new door for the preparation of 2D materials with specific morphology.


2011 ◽  
Vol 415-417 ◽  
pp. 747-750
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

In order to study the effects of laser fluence on silver nanoparticles colloid, the silver nanoparticles colloid was prepared by pulsed laser ablation of silver target for 10min in distilled water at different laser fluence. The particles size,morphologies and absorption spectroscopy of the obtained nanoparticles colloid were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results shown that the average diameter of the silver nanoparticles prepared at the laser fluence of 4.2J/cm2 was the smallest (D=17.54nm), also, the distribution of particle size was narrowest (=36.86nm) and the morphologies were more homogeneous. It was confirmed that the nanoparticles size and shape could be controlled by pulsed laser ablation parameters.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

High-resolution transmission electron microscopy has proven to be very useful in direct detection of crystalline phases that exist over extremely small volumes, yielding information about structure, orientation, and, under appropriate circumstances, composition. In this paper, we report the detection of a crystalline phase in the tungsten-rich layer of an annealed 7 nm-period tungsten-carbon multilayer produced at the Center for X-Ray Optics at the Lawrence Berkeley Laboratory.The multilayers were prepared by dc magnetron sputtering at floating temperature. The argon sputter gas pressure was 0.0020 torr. Different techniques were employed to produce cross-section and plan-view samples for TEM. For cross-section samples, 70 bilayers of W and C were sputtered on semiconductor-grade Si (111) wafers. For plan-view samples, the substrates on which the multilayer was grown consisted of 3 mm-diameter 300-mesh copper microscope grids, mounted on glass slide with Crystalbond® vacuum adhesive. After a deposition of 4 bilayers of W-C, keeping the same sputtering parameters as those of the Si substrates to guarantee the same layer thicknesses, the glass slide was soaked in acetone to disolve the Crystalbond®, leaving the multilayer spanning the holes of the copper grids. Both the Si-substrate and copper-grid samples were annealed at 500°C for 4 hours under vacuum of 10−6 torr. The annealed Si-substrate sample was then prepared for cross-section by mechanical grinding, and ion milling in a cold stage at 5kV. The cross-section sample was studied in a JEOL JEM 200CX with ultrahigh resolution goniometer, with the eletron beam parallel to the [112] of the Si substrate. The plan-view sample was studied in a Philips 301 operating at 100kV.


2005 ◽  
Vol 475-479 ◽  
pp. 3859-3862 ◽  
Author(s):  
Takeo Sasaki ◽  
Teruyasu Mizoguchi ◽  
Katsuyuki Matsunaga ◽  
Shingo Tanaka ◽  
Takahisa Yamamoto ◽  
...  

Interfacial atomic and electronic structures of Cu/Al2O3(0001) and Cu/Al2O3(11 _ ,20) prepared by a pulsed-laser deposition technique were characterized by high-resolution transmission electron microscopy (HRTEM) and electron energy-loss spectroscopy (EELS). It was found that both systems have O-terminated interfaces, irrespective of different substrate orientations. This indicates that Cu-O interactions across the interface play an important role for the Cu/Al2O3 systems.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Zhiwen Chen ◽  
C. M. L. Wu ◽  
C. H. Shek ◽  
J. K. L. Lai ◽  
Z. Jiao ◽  
...  

AbstractThe microstructural defects of nanocrystalline SnO2 thin films prepared by pulsed laser deposition have been investigated using transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy. Defects inside nanocrystalline SnO2 thin films could be significantly reduced by annealing the SnO2 thin films at 300 °C for 2 h. High-resolution transmission electron microscopy showed that stacking faults and twins were annihilated upon annealing. In particular, the edges of the SnO2 nanoparticles demonstrated perfect lattices free of defects after annealing. Raman spectra also confirmed that annealing the specimen was almost defect-free. By using thermal annealing, defect-free nanocrystalline SnO2 thin films can be prepared in a simple and practical way, which holds promise for applications as transparent electrodes and solid-state gas sensors.


Sign in / Sign up

Export Citation Format

Share Document