Kinetic nature of hard magnetic Nd50Al15Fe15Co20 bulk metallic glass with distinct glass transition

2004 ◽  
Vol 19 (5) ◽  
pp. 1307-1310 ◽  
Author(s):  
L. Xia ◽  
M.B. Tang ◽  
H. Xu ◽  
M.X. Pan ◽  
D.Q. Zhao ◽  
...  

A hard magnetic Nd50Al15Fe15Co20 bulk metallic glass (BMG) was prepared in the shape of a rod up to 3 mm in diameter by suction casting. The glass transition and crystallization behaviors as well as their kinetic nature have been studied. In contrast to the previously reported hard magnetic Nd–Al–Fe–Co BMGs, Nd50Al15Fe15Co20 as-cast rod exhibits a distinct glass transition and multistep crystallization behaviors in the differential scanning calorimetry traces and lower coercivity. The BMG provides an ideal model for the investigation of glass transition and crystallization of hard magnetic Nd–Al–Fe–Co glass-forming alloys.

2003 ◽  
Vol 806 ◽  
Author(s):  
R. Raghavan ◽  
U. Ramamurty ◽  
J. Basu ◽  
S. Ranganathan ◽  
N. Nishiyama

ABSTRACTThe stability of a Pd40Cu30Ni10P20 bulk metallic glass (BMG) against structural relaxation is investigated by isothermal and isochronal annealing heat treatments below and above its glass transition temperature, Tg, for varying periods. Differential scanning calorimetry (DSC) of the annealed samples shows an excess endotherm at Tg, irrespective of the annealing temperature. This recovery peak evolves exponentially with annealing time and is due to the destruction of anneal-induced compositional short range ordering. The alloy exhibits a high resistance to crystallization on annealing below Tg and complex Pd- and Ni-phosphides evolve on annealing above Tg.


2014 ◽  
Vol 910 ◽  
pp. 48-52 ◽  
Author(s):  
Jian Sheng Gu ◽  
Hui Feng Bo

Structural relaxation through isothermal annealing below the glass transition temperature was conducted on a Zr64.13Cu15.75Ni10.12Al10bulk metallic glass. Differential scanning calorimetry was used to quantify enthalpy differences between the as-cast and relaxed samples, which were then related to average free volume differences. The influence of structural relaxation on plasticity was examined. While the free volume decreasement can be clearly observed between the as-cast and relaxed samples, structural relaxation is not accompanied by severe embrittlement.


1996 ◽  
Vol 455 ◽  
Author(s):  
Ralf Busch ◽  
Andreas Masuhr ◽  
Eric Bakke ◽  
William L. Johnson

ABSTRACTThe viscosities of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 and the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass forming liquids was determined from the melting point down to the glass transition in the entire temperature range of the supercooled liquid. The temperature dependence of the viscosity in the supercooled liquid obeys the Vogel-Fulcher-Tammann (VFT) relation. The fragility index D is about 20 for both alloys and the ratio between glass transition temperature and VFT temperature is found to be 1.5. A comparison with other glass forming systems shows that these bulk metallic glass formers are strong liquids comparable to sodium silicate glass. Furthermore, they are the strongest among metallic glass forming liquids. This behavior is a main contributing factor to the glass forming ability since it implicates a higher viscosity from the melting point down to the glass transition compared to other metallic liquids. Thus, the kinetics in the supercooled liquid is sluggish and yields a low critical cooling rate for glass formation. The relaxation behavior in the glass transition region of the alloys is consistent with their strong glassy nature as reflected by a stretching exponent that is close to 0.8. The microscopic origin of the strong liquid behavior of bulk metallic glass formers is discussed.


2021 ◽  
Vol 875 ◽  
pp. 70-75
Author(s):  
Syed Zameer Abbas ◽  
Rashid Ali ◽  
Syed Muttahir Shah ◽  
Owais Jan ◽  
Munim Awan

Bulk metallic glasses (BMGs) are an important class of materials with unique set of properties. A bulk metallic glass with composition of (Fe0.6Co0.4)71Nb4Si5B20 was cast in the form of a 1 mm thick strip in a water cooled copper mold. The BMG produced was characterized for structure, thermal and mechanical properties. The X-ray diffraction performed on the as cast alloy has shown completely amorphous structure. The glass transition and crystallization peak temperatures obtained through differential scanning calorimetry scan were 542 °C and 588.4 °C, respectively. Some cast amorphous alloy sample was annealed below glass transition (450 °C for 30 mi93nutes) and others above glass transition (580 °C for 5 minutes) temperatures. Nano- indentation hardness of 13.3 GPa was obtained for as cast alloy while a hardness values of 12.8 and 15.84 GPa were measured for heat treated alloys at temperature of 450 °C and 580 °C, respectively. Increase in hardness was attributed to formation of crystals in an amorphous matrix whereas decrease in hardness was due to relaxation of quenching residual stresses. The maximum value of elastic modulus obtained through indentation was 255 GPa for 580 °C heat treated sample.


2007 ◽  
Vol 1048 ◽  
Author(s):  
Jinwoo Hwang ◽  
Hongbo Cao ◽  
Paul M. Voyles

AbstractWe investigated the influence of annealing on the nanometer-scale medium-range order in Zr54Cu38Al8 bulk metallic glass using fluctuation electron microscopy. Fluctuation microscopy experiments probing structure at a length scale of 1 nm show that the as-cast Zr bulk metallic glass contains significant medium range order. That structure is unchanged by annealing at 87% of the glass transition temperature for 24 hours, although that anneal does significantly change the differential scanning calorimetry trace.


2002 ◽  
Vol 754 ◽  
Author(s):  
B. S. Sundar Daniel ◽  
Martin Heilmaier ◽  
Birgit Bartusch ◽  
Jörn Kanzow ◽  
Katja Günther-Schade ◽  
...  

ABSTRACTMetallic glasses lack long-range translational symmetry and have excess volume trapped within their amorphous structure, which has a direct bearing on their physical properties including deformation characteristics. Moreover, the trapped excess free volume is directly correlated to the defect concentration facilitating the possibility to model the temperature and time dependence of the free volume changes during creep as a trade off between defect generation and annihilation. Using differential scanning calorimetry (DSC) analysis the residual free volume of a metallic glass can be characterised based on the glass transition peak height (Δcp). In the present work constant strain rate tests were carried out at the ‘onset’ (Tgon = 685 K) and ‘point of inflection’ (Tgp = 705 K) of the calorimetric glass transition to study the time dependent flow behaviour in Zr55Cu30Al10Ni5 bulk metallic glass. Modelling based on DSC analysis and positron lifetime spectroscopy on samples creep deformed to different plastic strain values corroborate the stress decrease after the peak stress (‘stress overshoot’) occurring in bulk metallic glasses with increasing plastic strain to be associated with a small increase in free volume.


Sign in / Sign up

Export Citation Format

Share Document