scholarly journals Research in Earth’s frozen wastelands

MRS Bulletin ◽  
2019 ◽  
Vol 44 (06) ◽  
pp. 434-435
Author(s):  
Eva Karatairi ◽  
Sabrina Sartori

Earth’s cryosphere is shrinking. The cryosphere is the frozen part of our planet that is covered by solid water and where ground temperature remains below 0°C for at least some part of the year. From the North to the South Pole, as well as on the highest altitudes, scientists have recently observed the seasonal snow cover decreasing, the permafrost thawing, and the ice retreating.

2013 ◽  
Vol 37 (4) ◽  
pp. 296-305 ◽  
Author(s):  
Qi-Qian WU ◽  
Fu-Zhong WU ◽  
Wan-Qin YANG ◽  
Zhen-Feng XU ◽  
Wei HE ◽  
...  

2014 ◽  
Vol 60 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Snehmani ◽  
Anshuman Bhardwaj ◽  
Mritunjay Kumar Singh ◽  
R.D. Gupta ◽  
Pawan Kumar Joshi ◽  
...  

2018 ◽  
Vol 12 (4) ◽  
pp. 1137-1156 ◽  
Author(s):  
Paul J. Kushner ◽  
Lawrence R. Mudryk ◽  
William Merryfield ◽  
Jaison T. Ambadan ◽  
Aaron Berg ◽  
...  

Abstract. The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.


2021 ◽  
Author(s):  
Athena Coustenis ◽  
Donald Jennings ◽  
Richard Achterberg ◽  
Panayotis Lavvas ◽  
Conor Nixon ◽  
...  

<p>Titan is a unique body in the solar system in particular because of its earth-like surface features, its putative undersurface liquid water ocean and its large organic content in the atmosphere and on the surface . These chemical species evolve with season, as Titan follows Saturn in its orbit around the Sun with an inclination of about 27°. We performed an analysis of spectra acquired by Cassini/CIRS at high resolution covering the range from 10 to 1500 cm<sup>-1</sup> since the beginning and until the last flyby of Titan in 2017 and describe the temperature and composition variations ([1-3]. By applying our radiative transfer code (ARTT) to the high-resolution CIRS spectra we study the stratospheric evolution over almost two Titan seasons [1,2]. CIRS nadir and limb spectral together show variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE) and also during one Titan year.</p><p>Since the 2010 equinox we have thus reported on monitoring of Titan’s stratosphere near the poles and in particular on the observed strong temperature decrease and compositional enhancement above Titan’s southern polar latitudes since 2012 and until 2014 of several trace species, such as complex hydrocarbons and nitriles, which were previously observed only at high northern latitudes. This effect followed the transition of Titan’s seasons from northern winter in 2002 to northern summer in 2017, while at that latter time the southern hemisphere was entering winter.</p><p>Our data show a continued decrease of the abundances which we first reported to have started in 2015. The 2017 data we have acquired and analyzed here are important because they are the only ones recorded since 2014 close to the south pole in the far-infrared nadir mode at high resolution. A large temperature increase in the southern polar stratosphere (by 10-50 K in the 0.5 mbar-0.05 mbar pressure range) is found and a change in the temperature profile’s shape. The 2017 observations also show a related significant decrease in most of the abundances which must have started sometime between 2014 and 2017 [3]. In our work, we show that the equatorial latitudes remain rather constant throughout the Cassini mission.</p><p>We have thus shown that the south pole of Titan is now losing its strong enhancement, while the north pole also slowly continues its decrease in gaseous opacities. It would have been interesting to see when this might happen, but the Cassini mission ended in September 2017. Perhaps future ground-based measurements and the Dragonfly mission can pursue this investigation and monitor Titan’s atmosphere to characterize the seasonal events. Our results set constraints on GCM and photochemical models.</p><p>References:</p><p> [1] Coustenis et al., 2016, Icarus 270, 409-420; [2] Coustenis et al., 2018, Astroph. J., Lett., 854, no2; [3] Coustenis et al., 2020. Titan’s neutral atmosphere seasonal variations up to the end of the Cassini mission. Icarus 344, 113413. https://doi.org/10.1016/j.icarus.2019.113413.</p>


1995 ◽  
Vol 41 (139) ◽  
pp. 474-482 ◽  
Author(s):  
Gary Koh ◽  
Rachel Jordan

AbstractThe ability of solar radiation to penetrate into a snow cover combined with the low thermal conductivity of snow can lead to a sub-surface temperature maximum. This elevated sub-surface temperature allows a layer of wet snow to form below the surface even on days when the air temperature remains sub-freezing. A high-resolution frequency-modulated continuous wave (FMCW) radar has been used to detect the onset of sub-surface melting in a seasonal snow cover. The experimental observation of sub-surface melting is shown to be in good agreement with the predictions of a one-dimensional mass- and energy-balance model. The effects of varying snow characteristics and solar extinction parameters on the sub-surface melt characteristics are investigated using model simulations.


Sign in / Sign up

Export Citation Format

Share Document