Progress in the Atomic-Scale Analysis of Materials with the Three-Dimensional Atom Probe

MRS Bulletin ◽  
2001 ◽  
Vol 26 (2) ◽  
pp. 102-107 ◽  
Author(s):  
A. Cerezo ◽  
D. J. Larson ◽  
G. D. W. Smith

Exactly 50 years ago, E.W. Müller became the first person to observe single atoms, with the aid of the field-ion microscope (FIM). In 1967, with John Panitz and S. Brooks McLane, Müller's invention of the atom probe meant that, in his words, “We can now really deal much more intimately with the individual atoms which we encounter, since we know their names.” By combining position-sensitive detection with the time-of-flight mass spectrometry of single atoms in the atom probe, Cerezo and co-workers in the late 1980s built an instrument capable of reconstructing the three-dimensional (3D) atomic distribution of elements present in a material. The instruments that are capable of microanalysis at this level, called generically 3D atom probes (3DAPs), were the subject of two articles published in MRS Bulletin in 1994. In this article, we review some of the progress in the field since that time, in particular, the expansion of the range of materials problems that can be addressed by this powerful technique.

Author(s):  
T. F. Kelly ◽  
P. P. Camus ◽  
J. J. McCarthy ◽  
D. J. Larson ◽  
L. M. Holzman ◽  
...  

For the purposes of analytical characterization on the atomic scale, the ultimate instrument would identify every atom in a sample and determine its position with atomic-scale resolution. The recently developed positionsensitive atom probe (POSAP) comes as close as yet possible to this goal. This is the only experimental technique which can analyze the three-dimensional (3D) composition of a sample on a sub-nanometer scale.By adding a position-sensitive detector (PSD) to a conventional atom probe/field ion microscope, a 3D data structure with position-correlated compositional analysis is acquired. The 3D data are stored on a computer and may be examined for structural and compositional information at an atomic level. Note that, because it uses time-of-flight mass spectroscopy, all elements and their isotopes are detected in this way with equal proficiency. Usually, the evaporation rate is mediated by pulsing the field on the specimen. This approach, however, severely limits the data acquisition rate (about 1 atom per second) and mass resolution (about 1 part in 30).


Author(s):  
T. F. Kelly ◽  
P. P. Camus ◽  
D. J. Larson ◽  
L. M. Holzman

Atom probe microscopy, which is based on the first ever atomic-scale imaging technique, field ion microscopy (FIM), has entered a new era in its development. Three-dimensional atom probes (3DAP) are now operating which produce 3D images with atomic scale resolution. It appears that the technology will soon be at hand to make 3DAPs do everything that their predecessor, the conventional atom probe, now does and also reach the third dimension. These microscopes will be simpler, smaller, faster, and much more powerful than the conventional atom probe. Several developments are responsible for this suggestion. 1) Rapid pulsing schemes are being developed which will make it possible to achieve on the order of 106 pulses per second. 2) Highspeed position-sensitive detectors (PSDs) have been designed which can detect several ions in a givenpulse with very high precision. 3) New specimen geometries will soon become possible which will revolutionize the atom probe. Let us consider the ramifications of each of these developments in turn.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1189-1190
Author(s):  
M. K. Miller

The atom probe field ion microscope can resolve and identify individual atoms. This ability is demonstrated in a pair of field ion micrographs of an Ni3Al specimen, Fig. 1, in which the individual atoms on the close packed (111) plane are clearly resolved. Comparison of these two micrographs reveals that an individual atom was field evaporated between the micrographs. Due to the hemispherical nature of the specimen, the ability to resolve this two dimensional atomic arrangement is only possible on low index plane facets. The spatial resolution in field ion images is determined by a number of factors including specimen temperature, material, microstructural features, specimen geometry, and crystallographic location.The spatial resolution of the data obtained in atom probe and 3 dimensional atom probe compositional analyses can be evaluated with the use of field evaporation or field desorption images. The field evaporation images are formed from the surface atoms with the use of a single atom sensitive detector whereas the field ion image is formed from the projection of a continuous supply of ionized image gas atoms.


1999 ◽  
Vol 581 ◽  
Author(s):  
Matthias Abraham ◽  
Mattias Thuvandert ◽  
Helen M. Lane ◽  
Alfred Cerezo ◽  
George D.W. Smith

ABSTRACTNanocrystalline Ni-P alloys produced by electrodeposition have been characterised by three-dimensional atom probe (3DAP) analysis. In the as-deposited materials, there are indications of some variation in P concentration between grains and segregation to grain boundaries. After heat treatment however, strong grain boundary segregation and the formation of Ni3P precipitates have been observed.


2004 ◽  
Vol 10 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Thomas F. Kelly ◽  
Tye T. Gribb ◽  
Jesse D. Olson ◽  
Richard L. Martens ◽  
Jeffrey D. Shepard ◽  
...  

The first dedicated local electrode atom probes (LEAP [a trademark of Imago Scientific Instruments Corporation]) have been built and tested as commercial prototypes. Several key performance parameters have been markedly improved relative to conventional three-dimensional atom probe (3DAP) designs. The Imago LEAP can operate at a sustained data collection rate of 1 million atoms/minute. This is some 600 times faster than the next fastest atom probe and large images can be collected in less than 1 h that otherwise would take many days. The field of view of the Imago LEAP is about 40 times larger than conventional 3DAPs. This makes it possible to analyze regions that are about 100 nm diameter by 100 nm deep containing on the order of 50 to 100 million atoms with this instrument. Several example applications that illustrate the advantages of the LEAP for materials analysis are presented.


2017 ◽  
Vol 23 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Daniel Haley ◽  
Paul A. J. Bagot ◽  
Michael P. Moody

AbstractIn this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200–500 kPa (2–5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide–metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.


2017 ◽  
Vol 23 (2) ◽  
pp. 210-220 ◽  
Author(s):  
Francois Vurpillot ◽  
Frédéric Danoix ◽  
Matthieu Gilbert ◽  
Sebastian Koelling ◽  
Michal Dagan ◽  
...  

AbstractThis article reviews recent advances utilizing field-ion microscopy (FIM) to extract atomic-scale three-dimensional images of materials. This capability is not new, as the first atomic-scale reconstructions of features utilizing FIM were demonstrated decades ago. The rise of atom probe tomography, and the application of this latter technique in place of FIM has unfortunately severely limited further FIM development. Currently, the ubiquitous availability of extensive computing power makes it possible to treat and reconstruct FIM data digitally and this development allows the image sequences obtained utilizing FIM to be extremely valuable for many material science and engineering applications. This article demonstrates different applications of these capabilities, focusing on its use in physical metallurgy and semiconductor science and technology.


2006 ◽  
Vol 14 (4) ◽  
pp. 34-41 ◽  
Author(s):  
Thomas F. Kelly ◽  
Keith Thompson ◽  
Emmanuelle A. Marquis ◽  
David J. Larson

When making a sculpture, it is the eyes that guide the hands and tools and perceive the outcome. In simple words, “in order to make, you must be able to see.” So too, when making a nanoelectronic device, it is the microscope (eyes) that guides the process equipment (hands and tools) and perceives the outcome. As we emerge into the century of nanotechnology, it is imperative that the eyes on the nanoworld provide an adequate ability to “see.” We have microscopies that resolve 0.02 nm on a surface (scanning tunneling microscope (STM)) or single atoms in a specimen (atom probe tomographs (APT) and transmission electron microscopes (TEM)).


1994 ◽  
Vol 332 ◽  
Author(s):  
T. F. Kelly ◽  
P. P. Camus ◽  
D. J. Larson ◽  
L. M. Holzman

ABSTRACTMuch of the current activity and excitement in materials science involves processing and understanding materials at the atomic scale. Accordingly, it is necessary for materials scientists to control and characterize materials at the atomic level. There are only a few microscopies that are capable of providing information about the structure of materials at the atomic level: the atom probe field ion microscope, the high resolution transmission electron microscope, and the scanning tunneling microscope. The three-dimensional atom probe (3DAP) determines the 3D location and elemental identity of each atom in a sample. It is the only technique that provides 3D information at the atomic scale.The origin and underlying concepts behind the 3DAP are described. Several examples of actual images from existing 3DAPs are shown with emphasis on nanometer-scale analysis. Current limitations of the technique and expected future developments in this form of microscopy are described. It is our opinion that 3D atomic-scale imaging will be an indispensable tool in materials science in the coming decades.


Sign in / Sign up

Export Citation Format

Share Document