Hard Materials with Tunable Porosity

MRS Bulletin ◽  
2009 ◽  
Vol 34 (8) ◽  
pp. 561-568 ◽  
Author(s):  
Jonah Erlebacher ◽  
Ram Seshadri

AbstractPorous metals and ceramic materials are of critical importance in catalysis, sensing, and adsorption technologies and exhibit unusual mechanical, magnetic, electrical, and optical properties compared to nonporous bulk materials. Materials with nanoscale porosity often are formed through molecular self-assembly processes that lock in a particular length scale; consider, for instance, the assembly of crystalline mesoporous zeolites with a pore size of 2–50 nm or the evolution of structural domains in block copolymers. Of recent interest has been the identification of general kinetic pattern-forming principles that underlie the formation of mesoporous materials without a locked- in length scale. When materials are kinetically locked out of thermodynamic equilibrium, temperature or chemistry can be used as a “knob” to tune their microstructure and properties. In this issue of the MRS Bulletin, we explore new porous metal and ceramic materials, which we collectively refer to as “hard” materials, formed by pattern-forming instabilities, either in the bulk or at interfaces, and discuss how such nonequilibrium processing can be used to tune porosity and properties. The focus on hard materials here involves thermal, chemical, and electrochemical processing usually not compatible with soft (for example, polymeric) porous materials and generally adds to the rich variety of routes to fabricate porous materials.

Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


2021 ◽  
Vol 6 (4) ◽  
pp. 712-716
Author(s):  
Xiao Liu ◽  
Yaoyu Liang ◽  
Jiayu Liu ◽  
Se Shi ◽  
Yuefei Wang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1413 ◽  
Author(s):  
Xiaocui Yang ◽  
Xinmin Shen ◽  
Panfeng Bai ◽  
Xiaohui He ◽  
Xiaonan Zhang ◽  
...  

Increasing absorption efficiency and decreasing total thickness of the acoustic absorber is favorable to promote its practical application. Four compressed porous metals with compression ratios of 0%, 30%, 60%, and 90% were prepared to assemble the four-layer gradient compressed porous metals, which aimed to develop the acoustic absorber with high-efficiency and thin thickness. Through deriving structural parameters of thickness, porosity, and static flow resistivity for the compressed porous metals, theoretical models of sound absorption coefficients of the gradient compressed porous metals were constructed through transfer matrix method according to the Johnson–Champoux–Allard model. Sound absorption coefficients of four-layer gradient compressed porous metals with the different permutations were theoretically analyzed and experimentally measured, and the optimal average sound absorption coefficient of 60.33% in 100–6000 Hz was obtained with the total thickness of 11 mm. Sound absorption coefficients of the optimal gradient compressed porous metal were further compared with those of the simple superposed compressed porous metal, which proved that the former could obtain higher absorption efficiency with thinner thickness and fewer materials. These phenomena were explored by morphology characterizations. The developed high-efficiency and thin-thickness acoustic absorber of gradient compressed porous metal can be applied in acoustic environmental detection and industrial noise reduction.


Soft Matter ◽  
2012 ◽  
Vol 8 (16) ◽  
pp. 4479 ◽  
Author(s):  
Martin Faber ◽  
Vincent S. D. Voet ◽  
Gerrit ten Brinke ◽  
Katja Loos

1998 ◽  
Vol 521 ◽  
Author(s):  
D. M. Elzey ◽  
H. N. G. Wadley

ABSTRACTStructurally porous metal sandwich panels consisting of dense face sheets and porous cores of controlled relative density can be manufactured by trapping inert gas during hot isostatic pressing and modifying its distribution via subsequent thermo-mechanical forming. At high pressures, the internal gas is expected to influence the forming response. This paper describes a model for the roll forming of a porous metal panel and its use to explore the effects of internal pore pressure upon rolling response. It is shown that for gas pressures below about half the yield strength of the fully dense matrix material, there is essentially no influence on the forming response. Only in the case of very high initial pore pressures or at relative densities approaching full theoretical does a noticeable effect arise. In this case, a limiting upper density is attainable which depends on the specific rolling conditions and geometry.


2007 ◽  
Vol 534-536 ◽  
pp. 949-952
Author(s):  
Yu Cheng Fang ◽  
H. Wang ◽  
Yong Zhou ◽  
Chun Jiang Kuang

Porous metal materials have been widely used in various industrial fields in the world. This paper describes the recent research achievements of CISRI in the development of porous metal materials. High performance porous metal materials, such as large dimensional and structure complicated porous metal aeration cones and tube, sub-micron asymmetric composite porous metal, metallic membrane, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed.


2018 ◽  
Vol 462 ◽  
pp. 65-72 ◽  
Author(s):  
Qin Xiang ◽  
Sha Li ◽  
Xuefeng Zou ◽  
Yujie Qiang ◽  
Bingbing Hu ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 05006 ◽  
Author(s):  
Oleg Stepanov ◽  
Boris Aksenov ◽  
Natalia Rydalina ◽  
Elena Antonova

Currently, porous metals are not used in heat supply systems. Usage of porous materials in heat exchangers increases the heat transfer intensity and makes the heat exchangers more compact. An experimental setup consisting of two circuits was developed in order to study the influence of porous metals on heat transfer intensity. In the first circuit the hot coolant is water, which flows through narrow tubes inside the porous metal. In the second circuit the cold coolant is freon. The purpose of the study is to obtain experimental confirmation of the hypothesis of an increase in the heat transfer intensity when using porous metals. To achieve this goal, experiments were carried out, which showed the increased heat transfer intensity. The standard methods for calculating heat exchangers cannot be applied in this case as the inner pores’ surface is unknown. A mathematical model was compiled allowing engineering calculations for the heat exchangers of this type. The hot water temperature inside the heat exchanger is determined analytically. The resulting equation allows us to determine the cooling degree of the first coolant, i.e. hot water. The obtained deviations between experimental and analytical data are within the acceptable limits, which indicates the reliability of the proposed model.


2015 ◽  
Vol 60 (2) ◽  
pp. 1169-1173
Author(s):  
Kee-Ahn Lee ◽  
Jae-Sung Oh ◽  
Young-Min Kong ◽  
Byoung-Kee Kim

Abstract Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°)C and with different pore sizes (500 μm, 450 μm, and 200 μm). High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis) were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.


Sign in / Sign up

Export Citation Format

Share Document