scholarly journals Preparation and Characterization of Gradient Compressed Porous Metal for High-Efficiency and Thin-Thickness Acoustic Absorber

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1413 ◽  
Author(s):  
Xiaocui Yang ◽  
Xinmin Shen ◽  
Panfeng Bai ◽  
Xiaohui He ◽  
Xiaonan Zhang ◽  
...  

Increasing absorption efficiency and decreasing total thickness of the acoustic absorber is favorable to promote its practical application. Four compressed porous metals with compression ratios of 0%, 30%, 60%, and 90% were prepared to assemble the four-layer gradient compressed porous metals, which aimed to develop the acoustic absorber with high-efficiency and thin thickness. Through deriving structural parameters of thickness, porosity, and static flow resistivity for the compressed porous metals, theoretical models of sound absorption coefficients of the gradient compressed porous metals were constructed through transfer matrix method according to the Johnson–Champoux–Allard model. Sound absorption coefficients of four-layer gradient compressed porous metals with the different permutations were theoretically analyzed and experimentally measured, and the optimal average sound absorption coefficient of 60.33% in 100–6000 Hz was obtained with the total thickness of 11 mm. Sound absorption coefficients of the optimal gradient compressed porous metal were further compared with those of the simple superposed compressed porous metal, which proved that the former could obtain higher absorption efficiency with thinner thickness and fewer materials. These phenomena were explored by morphology characterizations. The developed high-efficiency and thin-thickness acoustic absorber of gradient compressed porous metal can be applied in acoustic environmental detection and industrial noise reduction.

2019 ◽  
Vol 9 (22) ◽  
pp. 4798 ◽  
Author(s):  
Haiqin Duan ◽  
Xinmin Shen ◽  
Fei Yang ◽  
Panfeng Bai ◽  
Xiaofang Lou ◽  
...  

The composite structure of a microperforated panel and porous metal is a promising sound absorber for industrial noise reduction, sound absorption performance of which can be improved through parameter optimization. A theoretical model is constructed for the composite structure of a microperforated panel and porous metal based on Maa’s theory and the Johnson–Champoux–Allard model. When the limited total thickness is 30 mm, 50 mm, and 100 mm respectively, dimensional optimization of structural parameters of the proposed composite structure is conducted for the optimal average sound absorption coefficient in the frequency range (2000 Hz, 6000 Hz) through a cuckoo search algorithm. Simulation models of the composite structures with optimal structural parameters are constructed based on the finite element method. Validations of the optimal composite structures are conducted based on the standing wave tube method. Comparative analysis of the theoretical data, simulation data, and experimental data validates feasibility and effectiveness of the parameter optimization. The optimal sandwich structure with an actual total thickness of 36.8 mm can obtain the average sound absorption coefficient of 97.65% in the frequency range (2000 Hz, 6000 Hz), which is favorable to promote practical application of the composite structures in the fields of sound absorption and noise reduction.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 588 ◽  
Author(s):  
Fei Yang ◽  
Xinmin Shen ◽  
Panfeng Bai ◽  
Xiaonan Zhang ◽  
Zhizhong Li ◽  
...  

Sound absorption performance of a porous metal can be improved by compression and optimal permutation, which is favorable to promote its application in noise reduction. The 10-layer gradient compressed porous metal was proposed to obtain optimal sound absorption performance. A theoretical model of the sound absorption coefficient of the multilayer gradient compressed porous metal was constructed according to the Johnson-Champoux-Allard model. Optimal parameters for the best sound absorption performance of the 10-layer gradient compressed porous metal were achieved by a cuckoo search algorithm with the varied constraint conditions. Preliminary verification of the optimal sound absorber was conducted by the finite element simulation, and further experimental validation was obtained through the standing wave tube measurement. Consistencies among the theoretical data, the simulation data, and the experimental data proved accuracies of the theoretical sound absorption model, the cuckoo search optimization algorithm, and the finite element simulation method. For the investigated frequency ranges of 100–1000 Hz, 100–2000 Hz, 100–4000 Hz, and 100–6000 Hz, actual average sound absorption coefficients of optimal 10-layer gradient compressed porous metal were 0.3325, 0.5412, 0.7461, and 0.7617, respectively, which exhibited the larger sound absorption coefficients relative to those of the original porous metals and uniform 10-layer compressed porous metal with the same thickness of 20 mm.


Author(s):  
Weihua Chen ◽  
Tianning Chen ◽  
Xiaopeng Wang ◽  
Zhiping Ying

Porous metal, as a new acoustic material, bears the general metal properties, such as good conductivity, ductibility, heat transfer and high specific stiffness and intensity, and meanwhile exhibits good performance in sound absorption. Thus, it enjoys a growing popularity in industrial and civilian sound-absorbing applications where non-metallic materials are impracticable. Therefore it is of great significance to explore the sound-absorption properties of porous metals. The existing studies mainly focus on the low frequency range and are under uniform temperature assumption. In this paper, an experimental setup was built up to investigate the sound absorption of porous metals subject to temperature gradients, and much concern was paid to that of high frequency range. The setup is composed of five modules: I. heating module; II. cooling module; III. temperature controlling & testing module; IV. spectrum analyzer and V. impedance tube testing module. Based on this setup, the sound absorption of a hard-backed porous metal in a high-frequency range (2000–4000Hz)and under different temperature gradients (+2°C/mm, +4°C/mm and +6°C/mm) are measured, and results show that: 1) The sound absorption of porous metal is significantly influenced by temperature gradients; 2) The peak of sound absorption curve moves to a higher frequency range as the temperature gradient increases in the frequency range 2000∼4000Hz but the peak value decreases slightly; 3) The peak value of sound absorption curve enlarges as the temperature gradient increases but the frequency of peak value is fixed.


2016 ◽  
Vol 88 (1) ◽  
pp. 36-48 ◽  
Author(s):  
Reto Pieren ◽  
Beat Schäffer ◽  
Stefan Schoenwald ◽  
Kurt Eggenschwiler

Textile curtains can be designed to be good sound absorbers. Their acoustical performance, as usually described by the sound absorption coefficient, not only depends on the textile itself but also on the drapery fullness and the backing condition, that is, the spacing between the fabric and a rigid backing wall, or the absence of a backing in the case of a freely hanging curtain. This article reviews existing models to predict the diffuse-field sound absorption coefficient, which to date can only predict the case of flat curtains. A set of existing models is extended to the case of curtains with drapery fullness using a semi-empirical approach. The models consider different backing conditions, including freely hanging curtains. The existing and new models are validated by comparing predicted sound absorption coefficients with data measured in a reverberation room. Hereby, curtains consisting of different fabrics and with different degrees of fullness are considered. Besides situations with rigid backing, also the measurement data of textiles hung freely in space are included in this study. Comparisons reveal a very good agreement between measured and predicted sound absorption coefficients. Compared to currently available commercial sound absorption prediction software that can only handle the situation of flat textiles with rigid backing, the results of the presented models not only show a better agreement with measured data, but also cover a broader range of situations. The presented models are thus well applicable in the design and development of new textiles as well as in the room acoustical planning process.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Yawei Kuang ◽  
Yulong Ma ◽  
Debao Zhang ◽  
Qingzhu Wei ◽  
Shuchang Wang ◽  
...  

Abstract Perovskite solar cells are used in silicon-based tandem solar cells due to their tunable band gap, high absorption coefficient and low preparation cost. However, the relatively large optical refractive index of bottom silicon, in comparison with that of top perovskite absorber layers, results in significant reflection losses in two-terminal devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. In this paper, nanoholes array filled with TiO2 is introduced into bottom cells design. By finite-difference time-domain methods, the absorption efficiency and photocurrent density in the range of 300–1100 nm has been analyzed, and the structural parameters have been also optimized. Our calculations show the photocurrent density which tends to be saturated with the increase in the height of the nanoholes. The absorption enhancement modes of photons at different wavelengths have been analyzed intuitively by the distribution of electric field. These results enable a viable and convenient route toward high efficiency design of perovskite/Si tandem solar cells.


2011 ◽  
Vol 239-242 ◽  
pp. 1933-1936
Author(s):  
Jia Horng Lin ◽  
Chia Chang Lin ◽  
Chao Chiung Huang ◽  
Ching Wen Lin ◽  
You Cheng Liao ◽  
...  

In this study, the basic material for sound absorption was porous nonwoven made of polyester nonwoven and low-melting polyester fiber. Nonwoven was then attached with foam polyurethane as composite plank for sound absorption and sound isolation. We used two microphone impedance tube for sound absorption test and INSTRON 5566 mechanical testing machine for tensile test. The optimum sound absorption coefficients as 0.67 ± 0.008 was obtained when density of foam polyurethane was 1.0 Kg/㎥ with thickness of 20 mm; Polyester (PET) nonwoven were laminated with 9 layers in a total thickness of 10 mm; and its low-melting polyester fiber was 30 wt%. The composite plank obtained the maximum fracture stress when it contained low-melting-point (low-Tm) PET fiber at 30~40 wt%. The results of this study could be applied in the partitions inside ships, vehicles or buildings.


Author(s):  
Qiang Cheng ◽  
Baobao Qi ◽  
Hongyan Chu ◽  
Ziling Zhang ◽  
Zhifeng Liu ◽  
...  

The combination of sliding/rolling motion can influence the degree of precision degradation of ball screw. Precision degradation modeling and factors analysis can reveal the evolution law of ball screw precision. This paper presents a precision degradation model for factors analysis influencing precision due to mixed sliding-rolling motion. The precision loss model was verified through the comparison of theoretical models and experimental tests. The precision degradation due to rolling motion between the ball and raceway accounted for 29.09% of the screw precision loss due to sliding motion. Additionally, the total precision degradation due to rolling motion accounted for 21.03% of the total sliding precision loss of the screw and nut, and 17.38% of the overall ball screw precision loss under mixed sliding-rolling motion. In addition, the effects of operating conditions and structural parameters on precision loss were analyzed. The sensitivity coefficients of factors influencing were used to quantitatively describe impact degree on precision degradation.


Author(s):  
Parviz Enany ◽  
Oleksandr Shevchenko ◽  
Carsten Drebenstedt

AbstractThis paper presents experimental studies on the optimization of air–water flow in an airlift pump. Airlift pumps use compressed gas to verticall transport liquids and slurries. Due to the lack of theoretical equations for designing and predicting flow regimes, experimental investigations must be carried out to find the best condition to operate an airlift pump at high efficiency. We used a new air injection system and different submergence ratios to evaluate the output of a simple pump for vertical displacement of water in an underground mine. The tests were carried out in a new device with 5.64 m height and 10.2 cm circular riser pipe. Three air-jacket pipes, at different gas flows in the range of 0.002–0.09 m3/s were investigated with eight submergence ratios. It was found that with the same air flow rate, the most efficient flow of water was achieved when an air jacket with 3 mm diameter holes was used with a submergence ratio between 0.6 and 0.75. In addition, a comparison of practical results with two theoretical models proposed by other investigators showed that neither was able to accurately predict airlift performance in air–water flow mode.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1091 ◽  
Author(s):  
Dengke Li ◽  
Daoqing Chang ◽  
Bilong Liu

The diffuse sound absorption was investigated theoretically and experimentally for a periodically arranged sound absorber composed of perforated plates with extended tubes (PPETs) and porous materials. The calculation formulae related to the boundary condition are derived for the periodic absorbers, and then the equations are solved numerically. The influences of the incidence and azimuthal angle, and the period of absorber arrangement are investigated on the sound absorption. The sound-absorption coefficients are tested in a standard reverberation room for a periodic absorber composed of units of three parallel-arranged PPETs and porous material. The measured 1/3-octave band sound-absorption coefficients agree well with the theoretical prediction. Both theoretical and measured results suggest that the periodic PPET absorbers have good sound-absorption performance in the low- to mid-frequency range in diffuse field.


2010 ◽  
Vol 146-147 ◽  
pp. 1049-1055
Author(s):  
Xue Liu Fan ◽  
Xiang Chen ◽  
Yan Xiang Li

The acoustic properties of aluminum foams by gas injection method were studied experimentally. The micro and macro structure of aluminum foam with closed cells were observed by optical microscope (OM) and scanning electron microscope (SEM). The special structure of the closed-pores of the aluminum foams have leaded to good performance of the sound absorption based on three mechanisms: Helmholtz resonance, cell wall vibration and viscous and thermal effects. The effect of cell sizes, thickness of aluminum foams has been investigated and the cavity set at the back of the foam samples on the sound absorption efficiency of the foams has been measured. Analytical models of membrane vibrations were used to explain the sound absorption capacity of the foams.


Sign in / Sign up

Export Citation Format

Share Document