On the mechanism of charge transfer between neutral and negatively charged nitrogen-vacancy color centers in diamond

2011 ◽  
Vol 1282 ◽  
Author(s):  
Vladimira Petrakova ◽  
Andrew Taylor ◽  
Irena Kratochvilova ◽  
Frantisek Fendrych ◽  
Petr Cigler ◽  
...  

ABSTRACTThe presented work aims for the development of optically-traceable intracellular nanodiamond sensors, where photoluminescence can be changed by biomolecular attachment/delivery event. High biocompatibility, small size and stable luminescence from its color centers, makes nanodiamond (ND) particles an attractive alternative to molecular dyes for drug-delivery and cell-imaging applications. In our work we study how the surface modification of ND can change ND luminescence spectra. This method can be used as a novel detection tool for remote monitoring of chemical processes in biological systems. We discuss photoluminescence (PL) spectra of oxidized and hydrogenated ND and a single crystal diamond, containing engineered NV centers. The hydrogenation of ND leads to quenching of NV- related luminescence and a PL shift due to changing of occupation from NV- to NV0 states. We model this effect using electrical potential changes at the diamond surface.

10.14311/1450 ◽  
2011 ◽  
Vol 51 (5) ◽  
Author(s):  
V. Petráková

This paper presents work done on developing optically-traceable intracellular nanodiamond sensors, where the photoluminescence can be changed by a biomolecular attachment/delivery event. Their high biocompatibility, small size and stable luminescence from their color centers make nanodiamond (ND) particles an attractive alternative to molecular dyes for drug-delivery and cell-imaging applications. In our work, we study how surface modification of ND can change the color of ND luminescence (PL). This method can be used as a novel detection tool for remote monitoring of chemical processes in biological systems. Recently, we showed that PL can be driven by atomic functionalization, leading to a change in the color of ND luminescence from red (oxidized ND) to orange (hydrogenated ND). In this work, we show how PL of ND changes similarly when interacting with positively and negatively charged molecules. The effect is demonstrated on fluorinated ND, where the high dipole moment of the C-F bond is favorable for the formation of non-covalent bonds with charged molecules. We model this effect using electrical potential changes at the diamond surface. The final aim of the work is to develop a “smart” optically traceable drug carrier, where the delivery event is optically detectable.


2013 ◽  
Vol 35 (3) ◽  
pp. 361-365 ◽  
Author(s):  
O. Gaathon ◽  
J.S. Hodges ◽  
E.H. Chen ◽  
L. Li ◽  
S. Bakhru ◽  
...  

2014 ◽  
Vol 12 (07n08) ◽  
pp. 1560011 ◽  
Author(s):  
D. Gatto Monticone ◽  
J. Forneris ◽  
M. Levi ◽  
A. Battiato ◽  
F. Picollo ◽  
...  

Single-photon sources represent a key enabling technology in quantum optics, and single color centers in diamond are a promising platform to serve this purpose, due to their high quantum efficiency and photostability at room temperature. The widely studied nitrogen-vacancy (NV) centers are characterized by several limitations, thus other defects have recently been considered, with a specific focus of centers emitting in the near-infra red (NIR). In the present work, we report on the coupling of native NIR-emitting centers in high-quality single-crystal diamond with solid immersion lens (SIL) structures fabricated by focused ion beam (FIB) lithography. The reported improvements in terms of light collection efficiency make the proposed system an ideal platform for the development of single-photon emitters with appealing photophysical and spectral properties.


2021 ◽  
Vol 21 (8) ◽  
pp. 4412-4417
Author(s):  
Jonggeon Lee ◽  
Taemyung Kwak ◽  
Geunho Yoo ◽  
Seongwoo Kim ◽  
Okhyun Nam

In this study, we demonstrated the defect-selective etching and epitaxy technique for defect reduction of a heteroepitaxial chemical vapor deposition (CVD) diamond substrate. First, an 8 nm layer of nickel was deposited on the diamond surface using an e-beam evaporator. Then, defect-selective etching was conducted through an in situ single process using microwave plasma chemical vapor deposition (MPCVD). After defect-selective etching, the diamond layer was overgrown by MPCVD. The defect density measured from the atomic force microscope image decreased from 3.27×108 to 2.02×108 cm−2. The first-order Raman peak of diamond shifted from 1340 to 1336 cm−1, and the full width at half maximum (FWHM) decreased from 9.66 to 7.66 cm−1. Through the defect-selective etching and epitaxy technique, it was confirmed that the compressive stress was reduced and the crystal quality improved.


2021 ◽  
Author(s):  
Yong Li ◽  
Xiaozhou Chen ◽  
Maowu Ran ◽  
Yanchao She ◽  
Zhengguo Xiao ◽  
...  

Author(s):  
Kimberlee C. Collins ◽  
Gang Chen

Synthetic diamond has potential as a heat spreading material due to its uniquely high thermal conductivity. In small-scale devices, interfaces can dominate the resistance to heat transport, and thus play an important role in determining device performance. Here we use transient thermoreflectance techniques to measure the thermal interface conductance at metal-diamond interfaces. We study single crystal diamond samples with various surface terminations. We measure thermal interface conductance values over a range of temperatures from 88 K to 300 K, and find roughly 60 percent higher thermal interface conductance between Al and oxygenated diamond samples as compared to hydrogen terminated samples. The results reported here will be useful for device design and for advancing models of interfacial heat transport.


2011 ◽  
Vol 109 (8) ◽  
pp. 083530 ◽  
Author(s):  
J. O. Orwa ◽  
C. Santori ◽  
K. M. C. Fu ◽  
B. Gibson ◽  
D. Simpson ◽  
...  

2016 ◽  
Vol 14 (05) ◽  
pp. 1650026
Author(s):  
Xiao-Ning Qi ◽  
Yong Zhang

Nitrogen-vacancy (NV) centers implanted beneath the diamond surface have been demonstrated to be effective in the processing of controlling and reading-out. In this paper, NV center entangled with the fluorine nuclei collective ensemble is simplified to Jaynes–Cummings (JC) model. Based on this system, we discussed the implementation of quantum state storage and single-qubit quantum gate.


Sign in / Sign up

Export Citation Format

Share Document