Perovskite Ti3AlC Carbide Splitting in High Nb Containing TiAl Alloys

2014 ◽  
Vol 1760 ◽  
Author(s):  
Li Wang ◽  
Heike Gabrisch ◽  
Uwe Lorenz ◽  
Frank-Peter Schimansky ◽  
Andreas Stark ◽  
...  

ABSTRACTTransmission electron microscopy has been used to investigate the morphological development of the perovskite (P-) Ti3AlC carbides in the γ matrix of a Ti-45Al-5Nb-0.75C alloy during annealing. P-Ti3AlC carbides in the γ matrix initially have a needle-like shape but during annealing at 800 °C they change to a plate-like shape. In the needle-like shape the carbides are orientated parallel to the [001] direction of the matrix. They extend along the [100]γ or [010]γ direction into plates later and subsequently split into sub particles after extended annealing. It is proposed that the elastic interaction energy between the split sub domains may be the reason that this decomposition into sub-particles is energetically favorable.

2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2000 ◽  
Author(s):  
D. L. Tu ◽  
A. Kar ◽  
X. L. Wu

Abstract Titanium carbide particle (TiCp)-reinforced Ni alloy composite coatings are synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings are possible in terms of the origin of TiCp: undissolved TiCp and in-situ generated TiCp. The former originates from the TiCp pre-coated on the sample whereas the latter from in-situ chemical reaction between titanium and graphite in the molten pool during laser irradiation. For the coating reinforced by TiCp formed in-situ, the sub-micron TiCp particles are formed and uniformly distributed because of the in-situ reaction and trapping effect during rapid solidification. Graded distribution of TiCp is obtained on a macro scale. The volume fraction increases from 1.86% at the coating-substrate interface to 38.4% at the coating surface. For the coating reinforced by undissolved TiCp, analytical transmission electron microscopy (ATEM) and high resolution transmission electron microscopy (HRTEM) observations show the existence of the epitaxial growth of TiC, the precipitation of CrB and M23C6, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. In the matrix near the phase interface of undissolved TiCp, the loading curve obtained by nanoindenter exhibits pop-in phenomena due to the plastic deformation of cracks or debonding of TiCp from the matrix. For TiCp generated in-situ, no pop-in mark appears, indicating high fracture toughness. Coating with TiCp generated in-situ exhibits higher hardness and modulus than the coating with undissolved TiCp at regions near the phase interface. The coating reinforced by TiCp generated in-situ also displays higher impact wear resistance and abrasive wear resistance compared to the coatings with undissolved TiCp and without TiCp respectively.


2018 ◽  
Vol 941 ◽  
pp. 1613-1617 ◽  
Author(s):  
Li Jun Peng ◽  
Xu Jun Mi ◽  
Hao Feng Xie ◽  
Yang Yu ◽  
Guo Jie Huang ◽  
...  

The Cr precipitation sequence in Cu-Cr-Zr-Ag alloy during the aging process at 450°C could be obtained by Transmission electron microscopy (TEM) and High-resolution transmission microscopy (HRTEM) in the study. The strengthening curve shows a unimodal type and the tensile strength trends to peak when the aged for 4h. The Cr phase transformation of Cu-Cr-Zr-Ag aged at 450°C is supersaturated solid sloution→G.P zones→fcc Cr phase→order fcc Cr phase→bcc Cr phase. The orientation relationship between bcc Cr precipitates and the matrix change from cube-on-cube to NW-OR.


2016 ◽  
Vol 16 (4) ◽  
pp. 3744-3748 ◽  
Author(s):  
Yuan Gao ◽  
Yuebo Hu ◽  
Dacheng Zhou ◽  
Jianbei Qiu

Transparent oxyflouride glass ceramics composed of SiO2–Al2O3–Na2O–NaF–YF3 tri-coped with Nd3+/Yb3+/Ho3+ were prepared by thermal treatment. Segregation of NaYF4 nanocrystals in the matrix was confirmed from structural analysis by means of X-ray diffraction and transmission electron microscopy. Compared with glass samples, very strong green upconversion (UC) luminescence due to the Ho3+:(4F5, 5S2)→5I8 transition was observed in the glass ceramics under 808 nm excitation. It was found that upconversion intensity of Ho3+ strongly depends on the Nd3+ concentration, and the energy transfer process from Nd3+ to Ho3+ via Yb3+ was proposed.


2006 ◽  
Vol 503-504 ◽  
pp. 603-608
Author(s):  
Koji Inoke ◽  
Kenji Kaneko ◽  
Z. Horita

A significant change in microstructure occurs during the application of severe plastic deformation (SPD) such as by equal-channel angular pressing (ECAP). In this study, intense plastic strain was imposed on an Al-10.8wt%Ag alloy by the ECAP process. The amount of strain was controlled by the numbers of passes. After 1 pass of ECAP, shear bands became visible within the matrix. With increasing numbers of ECAP passes, the fraction of shear bands was increased. In this study, the change in microstructures was examined by three-dimensional electron tomography (3D-ET) in transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). With this 3D-ET method, it was possible to conduct a precise analysis of the sizes, widths and distributions of the shear bands produced by the ECAP process. It is demonstrated that the 3D-ET method is promising to understand mechanisms of microstructural refinement using the ECAP process.


Clay Minerals ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 21-43 ◽  
Author(s):  
G. Giorgetti ◽  
F. S. Aghib ◽  
K. J. T. Livi ◽  
A.-C. Gaillot ◽  
T. J. Wilson

AbstractA scanning and transmission electron microscopy study has been performed on Oligocene glacio-marine sediments, Devonian sandstones, and Jurassic dolerites recovered during CRP-3 drilling in the Ross Sea (Antarctica). Newly formed clay minerals occur in the rock matrices and as fillings in veins and faults which crosscut the whole sequence. Authigenic clays in sediments consist of beidellite-montmorillonite, berthierine/chlorite intergrowths and illite. Al,K-rich smectites and kaolinite occur in the Devonian sandstones. Saponite, berthierine/chlorite intergrowths, and Fe-hydroxides develop in the altered dolerites. Hence, the composition of the secondary phases depends also on the geochemistry of the rock they grow in. Within each sample, the same authigenic minerals form in the matrix and in the vein/fault. Clays precipitated from fluids, with variable fO2 values, which circulated in the system during the contemporaneous diagenetic and faulting events.


2011 ◽  
Vol 172-174 ◽  
pp. 517-522 ◽  
Author(s):  
Paolo Galimberti ◽  
Sabine Lay ◽  
Annie Antoni-Zdziobek

The precipitation behaviour of the Fe20Co18W (wt%) alloy was studied by transmission electron microscopy during aging treatments at 800°C. The decomposition of the matrix produces the C14 phase. At the beginning of the heat treatment, the observation at the atom scale indicates that the structure of the precipitates does not coincide exactly with the Laves phase. Using the orientation relationship between the Fe based matrix and the precipitates it is shown that simple atomic shifts can lead to the transformation from the bcc matrix to the C14 Laves phase.


Author(s):  
Łukasz Rakoczy ◽  
Małgorzata Grudzień-Rakoczy ◽  
Fabian Hanning ◽  
Grzegorz Cempura ◽  
Rafał Cygan ◽  
...  

AbstractThe equiaxed Ni-based superalloy René 108 was subjected to short-term annealing at five temperatures between 900 °C and 1100 °C. The phase composition, phase lattice parameters, microstructure, stereological parameters, and chemical composition of γ′ precipitates were investigated by thermodynamic simulations, X-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Analysis of the γ and γ′ lattice parameters using the Nelson-Riley extrapolation function showed that the misfit parameter for temperatures 900 °C to 1050 °C is positive (decreasing from 0.32 to 0.11 pct). At 1100 °C, the parameter becomes negative, δ = − 0.18 pct. During the short-term annealing, γ′ precipitates dissolution occurred progressing more rapidly with increasing temperatures. The surface fraction of γ′ precipitates decreased with increasing temperature from 0.52 to 0.34. The dissolution of γ′ precipitates did not only proceed through uninterrupted thinning of each individual precipitate, but also included more complex mechanisms, including splitting. Based on transmission electron microscopy, it was shown that after γ′ precipitates dissolution, the matrix close to the γ/γ′ interface is strongly enriched in Co and Cr and depleted in Al.


2006 ◽  
Vol 980 ◽  
Author(s):  
Christina Scheu ◽  
Limei Cha ◽  
Saso Sturm ◽  
Harald F. Chladil ◽  
Paul H. Mayrhofer ◽  
...  

AbstractAb-initio calculations using the Vienna ab-initio simulation package (VASP) were performed for a high Nb bearing γ TiAl based alloy with a composition of Ti-46at.%Al-9at.%Nb in order to evaluate the effect of Nb on the crystal structure. The calculations revealed that upon doping with Nb the resulting structure can have Ti and Nb atoms on Al-sites, which leads to a reduction of the c/a ratio of the tetragonal γ TiAl cell to ~1.In contrast, the c/a ratio is increased, compared to the binary phase, if the Nb atoms occupy solely Ti sites and if Ti antisite defects (i.e. Ti on the Al sublattice) are formed. The relaxed structure models were used to perform high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image simulations. The results showed that the positions of the Nb atoms should be detectable by these high spatial resolution methods, although it might be easier by HAADF-STEM investigations due to the stronger dependence of the signal on the atomic number Z.


2010 ◽  
Vol 25 (5) ◽  
pp. 828-834 ◽  
Author(s):  
Laura Silvestroni ◽  
Hans-Joachim Kleebe ◽  
Stefan Lauterbach ◽  
Mathis Müller ◽  
Diletta Sciti

The microstructures of two pressureless sintered ceramics, ZrB2 and HfB2 with 20 vol% MoSi2 added, were analyzed by scanning and transmission electron microscopies. Carbides and oxides of the transition metals and MoB were observed to be well dispersed within the boride matrix. Mo5Si3 and Mo5SiB2, with Zr or Hf impurities, were observed at triple grain junctions and showed a partial wetting of the matrix. It was also noticed that the borides had a core-shell structure, which was especially pronounced in the ZrB2-based composite. The experimental results suggest the formation of a Mo–Si–B liquid phase at high temperature, which strongly promoted the densification. The densification mechanisms are discussed in light of the microstructure evolution on sintering, thermodynamic considerations, and the phase diagrams of the species involved.


Sign in / Sign up

Export Citation Format

Share Document