Modeling of Ductile Fracture at Engineering Scales: A Mechanism-Based Approach

2015 ◽  
Vol 1759 ◽  
Author(s):  
Xiaosheng Gao ◽  
Jun Zhou ◽  
Jinyuan Zhai

ABSTRACTThis paper summarizes the work we conducted in recent years on modeling plastic response of metallic alloys and ductile fracture of engineering components, with the emphasis on the effect of the stress state. It is shown that the classical J2 plasticity theory cannot correctly describe the plasticity behavior of many materials. The experimental and numerical studies of a variety of structural alloys result in a general form of plasticity model for isotropic materials, where the yield function and the flow potential are expressed as functions of the first invariant of the stress tensor and the second and third invariants of the deviatoric stress tensor. Several mechanism-based models have been developed to capture the ductile fracture process of metallic alloys. Two of such models are described in this paper. The first one is a cumulative strain damage model where the damage parameter is dependent on the stress triaxiality and the Lode parameter. The second one is a modification to the Gurson-type porous plasticity models, where two damage parameters, representing void damage and shear damage respectively, are coupled into the yield function and flow potential. These models are shown to be able to predict fracture initiation and propagation in various specimens experiencing a wide range of stress states.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

AbstractDuctile fracture of metal often occurs in the plastic forming process of parts. The establishment of ductile fracture criterion can effectively guide the selection of process parameters and avoid ductile fracture of parts during machining. The 3D ductile fracture envelope of AA6063-T6 was developed to predict and prevent its fracture. Smooth round bar tension tests were performed to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai-Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, two ductile damage models were proposed based on the 3D fracture envelope of AA6063. Through the comparison of the two models, it was found that BW model had better fitting effect, and the sum of squares of residual error of BW model was 0.9901. The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test, but both of the predicting error of both two models were within the acceptable range of 15%. In the process of finite element simulation, the evolution process of ductile fracture can be well simulated by the two models. However, BW model can predict the location of fracture more accurately than MMC model.


2020 ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

Abstract The 3D ductile fracture envelopes of AA6063-T6 was developed to predict and prevent its fracture. Smooth round bar (SRB) tension tests were carried out to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar (NR) tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai and Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, a new ductile damage model was proposed based on the 3D fracture envelope of AA6063. The final results show that the predicted results from the proposed ductile fracture model showed good agreement with experimental results.


2020 ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

Abstract The 3D ductile fracture envelope of AA6063-T6 were developed to predict and prevent its fracture. Smooth round bar tension tests were performed to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai-Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, two ductile damage models were proposed based on 3D fracture envolope of AA6063. Through the comparison of the two models, it was found that BW model had better fitting effect, and the sum of squares of residual error of BW model was 0.9901. The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test, but both of the predicting error of both two models were within the acceptable range of 15%. In the process of finite element simulation, the evolution process of ductile fracture can be well simulated by the two models. However, BW model can predict the location of fracture more accurately than MMC model.


2021 ◽  
Author(s):  
Jianye Gao ◽  
Tao He ◽  
Yuanming Huo ◽  
Miao Song ◽  
Tingting Yao ◽  
...  

Abstract Ductile fracture of metal often occurs in the plastic forming process of parts. The establishment of ductile fracture criterion can effectively guide the selection of process parameters and avoid ductile fracture of parts during machining. The 3D ductile fracture envelope of AA6063-T6 were developed to predict and prevent its fracture. Smooth round bar tension tests were performed to characterize the flow stress, and a series of experiments were conducted to characterize the ductile fracture firstly, such as notched round bar tension tests, compression tests and torsion tests. These tests cover a wide range of stress triaxiality (ST) and Lode parameter (LP) to calibrate the ductile fracture criterion. Plasticity modeling was performed, and the predicted results were compared with corresponding experimental data to verify the plasticity model after these experiments. Then the relationship between ductile fracture strain and ST with LP was constructed using the modified Mohr–Coulomb (MMC) model and Bai-Wierzbicki (BW) model to develop the 3D ductile fracture envelope. Finally, two ductile damage models were proposed based on the 3D fracture envelope of AA6063. Through the comparison of the two models, it was found that BW model had better fitting effect, and the sum of squares of residual error of BW model was 0.9901. The two models had relatively large errors in predicting the fracture strain of SRB tensile test and torsion test, but both of the predicting error of both two models were within the acceptable range of 15%. In the process of finite element simulation, the evolution process of ductile fracture can be well simulated by the two models. However, BW model can predict the location of fracture more accurately than MMC model.


2019 ◽  
Vol 29 (8) ◽  
pp. 1199-1221 ◽  
Author(s):  
Saijun Zhang ◽  
Yanchun Lu ◽  
Zhaohui Shen ◽  
Chi Zhou ◽  
Yanshan Lou

The key point in this paper is the prediction of the onset of ductile fracture with a newly proposed ductile fracture criterion in various stress state ranging from shear to uniaxial tension. A series of tension tests with different material orientations are carried out up to fracture. The anisotropic Drucker yield function with an isotropic hardening law is identified to describe the elastic–plastic behaviors of Al6016-T4 aluminum alloy. The uncoupled ductile fracture criterion is calibrated and then utilized to construct the fracture locus of Al6016-T4, which is implemented into the ABAQUS/Explicit to validate the prediction of ductile fracture criterion by comparing experimental results to numerical ones. The validation demonstrates that the ductile fracture criterion can accurately predict the onset of ductile fracture for Al6016-T4 in medium stress triaxiality ranging from 0.1 to 0.44 where most ductile fracture occurs in sheet metal forming.


2020 ◽  
Vol 227 (1) ◽  
pp. 57-78
Author(s):  
Sondre Bergo ◽  
David Morin ◽  
Tore Børvik ◽  
Odd Sture Hopperstad

AbstractIn this paper, we investigate the possibility of predicting ductile fracture of pipeline steel by using the Gurson–Tvergaard–Needleman (GTN) model where the onset of void coalescence is determined based on in situ bifurcation analyses. To this end, three variants of the GTN model, one of which includes in situ bifurcation, are calibrated for a pipeline steel grade X65 using uniaxial and notch tension tests. Then plane-strain tension tests and Kahn tear tests of the same material are used for assessment of the credibility of the three models. Explicit finite element simulations are carried out for all tests using the three variants of the GTN model, and the results are compared to the experimental data. The capability of the simulation models to capture onset of fracture and crack propagation in the pipeline steel is evaluated. It is found that the use of in situ bifurcation as a criterion for onset of void coalescence in each element makes the GTN model easier to calibrate with less free parameters, all the while obtaining similar or even better predictions as other widely used formulations of the GTN model over a wide range of different stress states.


2012 ◽  
Vol 04 (02) ◽  
pp. 1250021 ◽  
Author(s):  
TINGTING ZHANG ◽  
XIAOSHENG GAO ◽  
BRYAN A. WEBLER ◽  
BRIAN V. COCKERAM ◽  
MATTHEW HAYDEN ◽  
...  

Increasing experimental evidence shows that the classical J2 plasticity theory may not fully describe the plastic response of many materials, including some metallic alloys. In this paper, the effect of stress state on plasticity and the general forms of the yield function and flow potential for isotropic materials are assumed to be functions of the first invariant of the stress tensor (I1) and the second and third invariants of the deviatoric stress tensor (J2 and J3). A 5083 aluminum alloy, Nitronic 40 (a stainless steel), and Zircaloy-4 (a zirconium alloy) were tested under tension, compression, torsion, combined torsion–tension and combined torsion–compression at room temperature to demonstrate the applicability of a proposed I1-J2-J3 dependent model. The I1-J2-J3 dependent plasticity model was implemented in ABAQUS via a user defined subroutine. The model parameters were determined and validated by comparing the numerically predicted and experimentally measured load versus displacement and/or torque versus twist angle curves. The results showed that the proposed model incorporating the I1-J2-J3 dependence produced output that matched experimental data more closely than the classical J2 plasticity theory for the loading conditions and materials tested.


2016 ◽  
Vol 725 ◽  
pp. 483-488
Author(s):  
Cristian Canales ◽  
Romain Boman ◽  
Jean Philippe Ponthot

The use of uncoupled damage models has been widely used over the years for the prediction of ductile fracture in engineering applications. Nevertheless, its applicability in the prediction of failure has been shown to be limited in the wide range of loading conditions encountered in different manufacturing processes. In order to enhance the formulation of former damage models, the Lode angle has been recently used to characterize the stress states along with the stress triaxiality. This new family of damage models has been demonstrated to give excellent results when proportional loading paths are considered, but its efficiency in more complex applications still need further analysis. To this end, a comparative study of former and recently developed uncoupled damage models is performed in this work. The identification of material parameters is done considering simple mechanical tests under different conditions. Then, the models are used to predict the onset and propagation of cracks during blanking, where numerical predictions are compared with experimental results. Finally, the selected damage models presented a remarkable overall performance in the range of clearances under study.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 279
Author(s):  
Kentaro Noda ◽  
Jian Sun ◽  
Isao Shimoyama

A tensor sensor can be used to measure deformations in an object that are not visible to the naked eye by detecting the stress change inside the object. Such sensors have a wide range of application. For example, a tensor sensor can be used to predict fatigue in building materials by detecting the stress change inside the materials, thereby preventing accidents. In this case, a sensor of small size that can measure all nine components of the tensor is required. In this study, a tensor sensor consisting of highly sensitive piezoresistive beams and a cantilever to measure all of the tensor components was developed using MEMS processes. The designed sensor had dimensions of 2.0 mm by 2.0 mm by 0.3 mm (length by width by thickness). The sensor chip was embedded in a 15 mm3 cubic polydimethylsiloxane (PDMS) (polydimethylsiloxane) elastic body and then calibrated to verify the sensor response to the stress tensor. We demonstrated that 6-axis normal and shear Cauchy stresses with 5 kPa in magnitudes can be measured by using the fabricated sensor.


Sign in / Sign up

Export Citation Format

Share Document