Selective Heating of Multiple Nanoparticles

2005 ◽  
Vol 900 ◽  
Author(s):  
Andy Wijaya ◽  
Katherine Alice Brown ◽  
Joshua Alper ◽  
Kimberly Hamad-Schifferli

ABSTRACTA method for heating multiple types of magnetic nanoparticles independently is described. This technique exploits tuning of the size and material dependent properties of magnetic field heating of nanoparticles to allow independent heating by application of the field at different frequencies. Magnetic field heating experiments as a function of field frequency show that there is potential for this technique in vitro.

2020 ◽  
Vol 16 (11) ◽  
pp. 1623-1632
Author(s):  
Abbas Moghanizadeh ◽  
Fakhreddin Ashrafizadeh ◽  
Jaleh Varshousaz ◽  
Mahshid Kharaziha

This study aims to evaluate the efficiency of a novel in vitro technique in clot capturing and dissolving them by applying magnetic force on magnetic nanoparticles (MNP) carrying thrombolytic agents. It is a quick and simple method to protect patients from a life-threatening pulmonary embolism in an emergency to provide time for the medical team. To analyze the in vitro efficiency of nano-magnetic capturing and dissolving of clots (NCDC), different levels of process parameter including strength magnetic field (0.1, 0.2 and 0.3 T) and fluid flow rate (2.5, 5 and 7 l/min) are exposed to different blood clots sizes from 5 × 10 to 20 × 10 mm2 (length × diameter), in an in vitro flow model. The results show that by increasing the parameters to their maximum values, it is possible to immobilize 100% of the clots and dissolve around 61.4% of clots weight. In addition, the clot-dissolving is directly proportional to the magnetic field strength. NCDC is an efficient technique in immobilizing and dissolving the clots and its efficiency depends on process parameters especially the magnetic field.


2018 ◽  
Author(s):  
Mahendran Subramanian ◽  
Arkadiusz Miaskowski ◽  
Stuart Iain Jenkins ◽  
Jenson Lim ◽  
Jon Dobson

AbstractThe manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been demonstrated to be useful in various biomedical applications. Some techniques have evolved utilizing this non-invasive external stimulus but the scientific community widely adopts few, and there is an excellent potential for more novel methods. The primary focus of this study is on understanding the manipulation of MNPs by a time-varying static magnetic field and how this can be used, at different frequencies and displacement, to manipulate cellular function. Here we explore, using numerical modeling, the physical mechanism which underlies this kind of manipulation, and we discuss potential improvements which would enhance such manipulation with its use in biomedical applications, i.e., increasing the MNP response by improving the field parameters. From our observations and other related studies, we infer that such manipulation depends mostly on the magnetic field gradient, the magnetic susceptibility and size of the MNPs, the magnet array oscillating frequency, the viscosity of the medium surrounding MNPs, and the distance between the magnetic field source and the MNPs. Additionally, we demonstrate cytotoxicity in neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cells in vitro. This was induced by incubation with MNPs, followed by exposure to a magnetic field gradient, physically oscillating at various frequencies and displacement amplitudes. Even though this technique reliably produces MNP endocytosis and/or cytotoxicity, a better biophysical understanding is required to develop the mechanism used for this precision manipulation of MNPs, in vitro.


Author(s):  
Luminita Labusca ◽  
Dumitru-Daniel Herea ◽  
Anca Emanuela Minuti ◽  
Cristina Stavila ◽  
Camelia Danceanu ◽  
...  

Purpose: Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies.Methods: Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The in vitro effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. In vitro chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell.Results: ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture in vitro compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC.Conclusion: ADSC-MNP display decreased cellular senescence and superior chondrogenic capability in vitro compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further in vivo studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.


2019 ◽  
Vol 9 (22) ◽  
pp. 4862 ◽  
Author(s):  
Qian Li ◽  
Xiaojun Liu ◽  
Zhen Lu ◽  
Wenjun Yang ◽  
Zili Lei ◽  
...  

In this study, covalent conjugation of thrombolytic drug urokinase to water-soluble magnetic nanoparticles (NPs) is proposed to enhance the efficiency of thrombolysis. Hydrophobic NPs of oleic acid (OA)-coated Fe3O4 are first synthesized and then surface-modified with the amphipathic copolymer poly(maleic anhydride-alt-1-octadecylene) (PMAO) to form water-soluble NPs of PMAO-OA-Fe3O4 with monodispersed sizes. PMAO-OA-Fe3O4 NPs display a good water-based stability without aggregation at near neutral pH and show good magnetic separation characteristics. The thrombolytic drug urokinase is then covalently linked with the former product through dehydration condensation reaction between the amino and carboxyl produced by dehydration of the anhydride under N-Ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Transmission electron microscope (TEM) images and dynamic light scattering (DLS) results show that the urokinase@PMAO-OA-Fe3O4 NPs are uniformly dispersed in water. The in vitro thrombolytic effect based on the manipulation of magnetic coupling, combined with static and alternating current (AC) magnetic fields, in a mimic blood-vascular system was studied. Drug release test shows that AC magnetic field can be used as switch and accelerator for NPs to release drugs. In addition, thrombolytic efficiency is nearly four times that of pure urokinase. This indicates that the coupling magnetic field may be a promising method to improve thrombolytic effect of the prepared magnetic carrier drug conjugates.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2313 ◽  
Author(s):  
Qian Li ◽  
Xiaojun Liu ◽  
Ming Chang ◽  
Zhen Lu

In this paper, an effective method of accelerating urokinase-administrated thrombolysis through a rotating magnetic field (RMF) of guided magnetic nanoparticles (NPs) in the presence of low-dose urokinase is proposed. The dispersed Fe3O4 NPs mixed with urokinase were injected into microfluidic channels occluded by thrombus prepared in vitro. These magnetic NPs aggregated into elongated clusters under a static magnetic field, and were then driven by the RMF. The rotation of Fe3O4 aggregates produced a vortex to enhance the diffusion of urokinase to the surface of the thrombus and accelerate its dissolution. A theoretical model based on convective diffusion was constructed to describe the thrombolysis mechanism. The thrombus lysis speed was determined according to the change of the thrombus dissolution length with time in the microfluidic channel. The experimental results showed that the thrombolysis speed with rotating magnetic NPs is significantly increased by nearly two times compared with using the same dose of pure urokinase. This means that the magnetically-controlled NPs approach provides a feasible way to achieve a high thrombolytic rate with low-dose urokinase in use.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Seung-Hyun Yang ◽  
Byeunghoon Kang ◽  
Yuna Choi ◽  
Hyun Wook Rho ◽  
Hye Young Son ◽  
...  

Aim: To confirm the biological effects of manganese ferrite magnetic nanoparticles (MFMNPs) and an external magnetic field on glioblastoma cells. Methods: U-87MG glioblastoma cells were prepared, into which the uptake of MFMNPs was high. The cells were then exposed to an external magnetic field using a neodymium magnet in vitro and in vivo. Results: LRP6 and TCF7 mRNA levels involved in the Wnt/β-catenin signaling pathway were elevated by the influence of MFMNPs and the external magnetic field. MFMNPs and the external magnetic field also accelerated tumor growth by approximately 7 days and decreased survival rates in animal experiments. Conclusion: When MFMNPs and an external magnetic field are applied for a long time on glioblastoma cells, mRNA expression related to Wnt/β-catenin signaling is increased and tumor growth is promoted.


2021 ◽  
Author(s):  
Magdalena Radović ◽  
Marija Mirković ◽  
Aleksandar S. Nikolić ◽  
Milorad Kuraica ◽  
Predrag Iskrenović ◽  
...  

Abstract Different phosphates and phosphonates have shown excellent coating ability toward magnetic nanoparticles, improving their stability and biocompatibility which enables their biomedical application. The magnetic hyperthermia efficiency of phosphates (IDP and IHP) and phosphonates (MDP and HEDP) coated Fe3O4 magnetic nanoparticles (MNPs) were evaluated in an alternating magnetic field. For a deeper understanding of hyperthermia, the behavior of investigated MNPs in the non-alternating magnetic field was monitored by measuring the transparency of the sample. To investigate their theranostic potential coated Fe3O4-MNPs were radiolabeled with radionuclide 177Lu. Phosphate coated MNPs were radiolabeled in high radiolabeling yield (> 99%) while phosphonate coated MNPs reached maximum radiolabeling yield of 78%. Regardless lower radiolabeling yield both radiolabeled phosphonate MNPs may be further purified reaching radiochemical purity of more than 95%. In vitro stabile radiolabeled nanoparticles in saline and HSA were obtained. The high heating ability of phosphates and phosphonates coated MNPs as sine qua non for efficient in vivo hyperthermia treatment and satisfactory radiolabeling yield justifies their further research in order to develop new theranostic agents.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Di Wu ◽  
Xiao Chang ◽  
Jingjing Tian ◽  
Lin Kang ◽  
Yuanhao Wu ◽  
...  

Abstract Background The therapeutic potential of exosomes derived from stem cells has attracted increasing interest recently, because they can exert similar paracrine functions of stem cells and overcome the limitations of stem cells transplantation. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) have been confirmed to promote osteogenesis and angiogenesis. The magnetic nanoparticles (eg. Fe3O4, γ-Fe2O3) combined with a static magnetic field (SMF) has been commonly used to increase wound healing and bone regeneration. Hence, this study aims to evaluate whether exosomes derived from BMSCs preconditioned with a low dose of Fe3O4 nanoparticles with or without the SMF, exert superior pro-osteogenic and pro-angiogenic activities in bone regeneration and the underlying mechanisms involved. Methods Two novel types of exosomes derived from preconditioned BMSCs that fabricated by regulating the contents with the stimulation of magnetic nanoparticles and/or a SMF. Then, the new exosomes were isolated by ultracentrifugation and characterized. Afterwards, we conducted in vitro experiments in which we measured osteogenic differentiation, cell proliferation, cell migration, and tube formation, then established an in vivo critical-sized calvarial defect rat model. The miRNA expression profiles were compared among the exosomes to detect the potential mechanism of improving osteogenesis and angiogenesis. At last, the function of exosomal miRNA during bone regeneration was confirmed by utilizing a series of gain- and loss-of-function experiments in vitro. Results 50 µg/mL Fe3O4 nanoparticles and a 100 mT SMF were chosen as the optimum magnetic conditions to fabricate two new exosomes, named BMSC-Fe3O4-Exos and BMSC-Fe3O4-SMF-Exos. They were both confirmed to enhance osteogenesis and angiogenesis in vitro and in vivo compared with BMSC-Exos, and BMSC-Fe3O4-SMF-Exos had the most marked effect. The promotion effect was found to be related to the highly riched miR-1260a in BMSC-Fe3O4-SMF-Exos. Furthermore, miR-1260a was verified to enhance osteogenesis and angiogenesis through inhibition of HDAC7 and COL4A2, respectively. Conclusion These results suggest that low doses of Fe3O4 nanoparticles combined with a SMF trigger exosomes to exert enhanced osteogenesis and angiogenesis and that targeting of HDAC7 and COL4A2 by exosomal miR-1260a plays a crucial role in this process. This work could provide a new protocol to promote bone regeneration for tissue engineering in the future. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document