A short review and Present Status of ZnO Nanoparticle Formation by Ion Implantation Combined with Thermal Oxidation

2005 ◽  
Vol 908 ◽  
Author(s):  
Hiroshi Amekura ◽  
Oleg A Plaksin ◽  
Naoki Umeda ◽  
Yoshihiko Takeda ◽  
Naoki Kishimoto ◽  
...  

AbstractRecently many groups have started studies of formation of zinc-oxide (ZnO) nanoparticle (NP) in transparent insulators, such as silica glass, sapphire, etc, using ion implantation techniques. In the early half of this article, we shortly review recent activities of ZnO NP formation using ion implantation combined with thermal oxidation. Some groups succeeded but the others did not. Even if they succeeded in the formation of ZnO nanostructures, one reported that they were in the shape of thin film and another reported the NP form. Based on our recent experimental results, we point out the importance of the oxidation temperature and the peculiar shapes and depth profiles of ZnO formed.

BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 145-153
Author(s):  
Guna Nidha Gnawali ◽  
Shankar P Shrestha ◽  
Khem N Poudyal ◽  
Indra B Karki ◽  
Ishwar Koirala

Gas sensors are devices that can convert the concentration of an analytic gas into an electronic signal. Zinc oxide (ZnO) is an important n-type metal oxide semiconductor which has been utilized as gas sensor for several decades. In this work, ZnO nanostructured films were synthesized by a hydrothermal route from ZnO seeds and used as a liquefied petroleum gas (LPG) sensor. At first ZnO seed layers were deposited on glass substrates by using spin coating method, then ZnO nanostructured were grown on these substrates by using hydrothermal growth method for different time duration. The effect of growth time and seed layers of ZnO nanostructured on its structural, optical, and electrical properties was studied. These nanostructures were characterized by X-ray diffraction, scanning electron microscopy, optical spectroscopy, and four probes sheet resistance measurement unit. The sensing performances of the synthetic ZnO nanostructures were investigated for LPG.XRD showed that all the ZnO nanostructures were hexagonal crystal structure with preferential orientation. SEM reviled that the size of nanostructure increased with increase in growth time. Band gap and sheet resistance for ZnO nanostructured thin film decreased with increase in growth time. ZnO nanostructured thin film showed high sensitivity towards LPG gas. The sensitivity of the film is observed to increase with increase in no of seed layers as well as growth time. The dependence of the LPG sensing properties on the different growth time of ZnO nanostructured was investigated. The sensing performances of the film were investigated by measured change in sheet resistance under expose to LPG gas. BIBECHANA 16 (2019) 145-153


2006 ◽  
Vol 287 (1) ◽  
pp. 2-6 ◽  
Author(s):  
H. Amekura ◽  
N. Umeda ◽  
M. Yoshitake ◽  
K. Kono ◽  
N. Kishimoto ◽  
...  

2011 ◽  
Vol 312-315 ◽  
pp. 1126-1131
Author(s):  
Mohamad Hafiz Mamat ◽  
Zuraida Khusaimi ◽  
Mohamad Mahmood Rusop

Zinc oxide (ZnO) nanostructures with different kind of morphologies were synthesized on glass substrates via the hydrothermal aqueous chemical growth method utilizing c-axis oriented ZnO thin film as seeded catalyst. By preparing ZnO thin film at different molar concentrations between 0.2~1.0 M, oval shaped ZnO nanostructures mixed with ZnO nanowires and rod shaped ZnO nanostructures mixed with ZnO nanowires were produced after immersion process into 0.0002 M zinc nitrate solution for 24 hour. The XRD spectra show synthesized ZnO nanostructures were ZnO hexagonal wurtzite crystalline. The photoluminescence (PL) measurement indicates the luminescences of the samples were depending on the shapes of ZnO nanostructure.


2021 ◽  
Vol 11 (20) ◽  
pp. 9676
Author(s):  
Raju Sapkota ◽  
Pengjun Duan ◽  
Tanay Kumar ◽  
Anusha Venkataraman ◽  
Chris Papadopoulos

Planetary ball-milled zinc oxide (ZnO) nanoparticle suspensions (nanoinks) were used to produce thin film chemiresistive gas sensors that operate at room temperature. By varying milling or grinding parameters (speed, time, and solvent) different thin film gas sensors with tunable particle sizes and porosity were fabricated and tested with dry air/oxygen against hydrogen, argon, and methane target species, in addition to relative humidity, under ambient light conditions. Grinding speeds of up to 1000 rpm produced particle sizes and RMS thin film roughness below 100 nm, as measured by atomic force and scanning electron microscopy. Raman spectroscopy, photoluminescence, and X-ray analysis confirmed the purity and structure of the resulting ZnO nanoparticles. Gas sensor response at room temperature was found to peak for nanoinks milled at 400 rpm and for 30 min in ethylene glycol and deionized water, which could be correlated to an increased film porosity and enhanced variation in electron concentration resulting from adsorption/desorption of oxygen ions on the surfaces of ZnO nanoparticles. Sensor response and dynamic behavior was found to improve as the temperature was increased, peaking between 100 and 150 °C. This work demonstrates the use of low-cost PBM nanoinks as the active materials for solution-processed thin film gas/humidity sensors for use in environmental, medical, food packaging, laboratory, and industrial applications.


2020 ◽  
Vol 64 (2) ◽  
pp. 202-218 ◽  
Author(s):  
Sumit Vyas

Zinc oxide has emerged as an attractive material for various applications in electronics, optoelectronics, biomedical and sensing. The large excitonic binding energy of 60 meV at room temperature as compared to 25 meV of gallium nitride, an III-V compound makes ZnO an efficient light emitter in the ultraviolet (UV) spectral region and hence favourable for optoelectronic applications. The high conductivity and transparency of ZnO makes it important for applications like transparent conducting oxides (TCO) and thin-film transistors (TFT). In this paper, the optoelectronic, electronic and other properties that make ZnO attractive for a variety of applications are discussed. Various applications of ZnO thin film and its devices such as light-emitting diodes (LED), UV sensors, biosensors, photodetectors and TFT that have been described by various research groups are presented.


Author(s):  
Wael Abdullah

Undoped and halogen-doped zinc oxide thin films are prepared by the thermal oxidation process. Zinc acetate dihydrate, ethanol, and Diethanolamine are used as precursor, solvent, and stabilizer, respectively. In the case of ZnO:Hal. dopant Ammonium chloride NH4Cl 99%, Benzene Bromide C6H5Br, or Benzene Iodide C6H5I for making dopant ZnO thin film with Cl, Br, I respectively is added to the precursor solution with an atomic percentage equal to 2-10.% hal. The transparent solution sprayed onto glass substrates, and are transformed into ZnO upon annealing at 500°C. XRD spectra of ZnO thin films, and optical properties of them as a function of halogen content have been investigated using U.V spectroscopy ( transmittance , refractive index, extinction coefficient and energy band gap ) for undoped and halogen-doped zinc oxide thin films.


2020 ◽  
Vol 10 ◽  
pp. 41-49
Author(s):  
Gunanidhi Gyanwali

Gas sensors are devices that can convert the concentration of an analyte gas into an electronic signal. Zinc oxide (ZnO) is one of the most important n-type metal oxide semiconductor which has been utilized as gas sensor for many years. In this work, ZnO nanostructured films were synthesized by a hydrothermal growth from ZnO seeds and used as a liquefied petroleum gas (LPG) sensor. At first ZnO seed layers were deposited on glass substrates by using spin coating method, then ZnO nanostructured were grown on these substrates by using hydrothermal growth method. The effect of seed layers of ZnO nanostructured on its structural, optical, and electrical properties was studied. These nanostructures were characterized by scanning electron microscopy, X-ray diffraction, optical spectroscopy, and sheet resistance measurement unit. The sensing performances of the synthetic ZnO nanostructures were investigated for LPG. XRD showed that all the ZnO nanostructures were hexagonal crystal structure. ZnO nanostructured thin film showed high sensitivity towards LPG gas. The sensitivity of the film is observed to increase with increase in number of seed layers. The sensitivity of the film was investigated by measured change in sheet resistance under with LPG gas.


Sign in / Sign up

Export Citation Format

Share Document