Ultra Shallow Junctions Optimization with Non Doping Species Co-implantation

2006 ◽  
Vol 912 ◽  
Author(s):  
Nathalie Cagnat ◽  
Cyrille Laviron ◽  
Daniel Mathiot ◽  
Blandine Duriez ◽  
Julien Singer ◽  
...  

AbstractThe permanent decrease of the transistor size to improve the performances of integrated circuits must be accompanied by a permanent decrease of the depth of the source-drain junctions. At the same time, in order to keep acceptable sheet resistance values, the dopant concentration in the source-drain areas has to be continuously increased. A possible technological way to meet the junction depth and abruptness requirements is to use co-implantation of non doping species with classical implantations, especially for light ions as B or P.In order to clarify the complex interactions occurring during these co-implantation processes, we have performed an extensive experimental study of the effect of Ge, F, N, C and their combinations on boron. A special interest was given to the overall integration issues. We will show that it is required to optimize the respective locations of co-implanted species with respect to the B profiles (more precisely the ion implantation damage locations), as well as the co-implanted species doses, to get an acceptable compromise between the efficient diffusion decrease required for the junction abruptness and depth, and a reasonable current leakages.

2004 ◽  
Vol 810 ◽  
Author(s):  
Alex Salnick ◽  
Lena Nicolaides ◽  
Jon Opsal ◽  
Amitabh Jain ◽  
Duncan Rogers ◽  
...  

ABSTRACTThermal wave (TW) studies of ultra-shallow junctions (USJ) formed by ion implantation into a semiconductor wafer followed by rapid thermal annealing (RTP) are described. It is shown that using the TW technique allows for a simultaneous determination of the most important USJ parameters – depth and profile abruptness. Experimental results for junction depth and abruptness obtained on a set of B+-implanted, RTP-annealed USJ samples show better than 0.99 correlations to the corresponding secondary ion mass spectroscopy (SIMS) data.


1997 ◽  
Vol 470 ◽  
Author(s):  
Daniel F. Downey ◽  
Sonu L. Daryanani ◽  
Marylou Meloni ◽  
Kristen M. Brown ◽  
Susan B. Felch ◽  
...  

ABSTRACT2. 0 keV 11B+, 2.2 keV 49BF2+ ion implanted and 1.0 kV Plasma Doped (PLAD) wafers of a dose of 1E15/cm2 were annealed at various times and temperatures in a variety of ambiente: 600 to 50,000 ppm O2 in N2; 5% NH3 in N2; N2O; N2 or Ar, in order to investigate the effects of the annealing ambient on the formation of ultra-shallow junctions. RGA data was collected during some (if the anneals to assist in identifying the complex surface chemistry responsible for boron out-diffusion. Subsequent to the anneals, ellipsometric, XPS, four-point probe sheet resistance and SJJVIS measurements were performed to further elucidate the effects of the different ambients on the r etained boron dose, the sheet resistance value, the RTP grown oxide layer and the junction depth. In the cases where oxygen was present, e.g. N2O and O2 in N2, an oxidation enhanced diffusion of the boron was observed. This was most dramatic for the N2O anneals, which at 1050°C 10s diffused the boron an additional 283 to 427 Å, depending on the particular doping condition and species. For the case of BF2 implants and PLAD, anneals in 5% NH3 in N2 reduced the junction depth by a nitridation reduced diffusion mechanism. RGA data indicated that the out-diffusion mechanisms for B and BF2 implanted wafers are different, with the BF2 exhibiting dopant loss mechanisms during the 950°C anneals, producing F containing compounds. B implants did not show doping loss mechanisms, ais observed by the RGA, until the 1050°C anneals and these signals did not contain F containing compounds. Equivalent effective energy boron implants of 8.9 keV BF2 vs. 2.0 keV B, however, indicated that the overall effect of the F in the BF2 implants is very beneficial in the creation of ultra-shallow junctions (compared to B implants): reducing the junction depth by 428 Å, and increasing the electrical activation (determined by SRP) by 11.7%, even though the retained dose (resulting from an increased out-diffusion of B), was decreased by 5.4%.


1996 ◽  
Vol 427 ◽  
Author(s):  
F. La Via ◽  
E. Rimini

AbstractUltra-Shallow p+/n and n+/p junctions were fabricated using a Silicide-As-Diffusion-Source (SADS) process and a low thermal budget (800÷900 °C). A thin layer (50 nm) of CoSi2 was implanted with As and BF2 and subsequently diffused at different temperatures and times to form two Ultra-Shallow junctions with a junction depth of 14 and 20 nm. These diodes were extensively investigated by I-V and C-V measurements in the range of temperature between 80 and 500 K. TEM delineation was used to controll the junction uniformity.


MRS Advances ◽  
2017 ◽  
Vol 2 (51) ◽  
pp. 2921-2926 ◽  
Author(s):  
H. Tanimura ◽  
H. Kawarazaki ◽  
K. Fuse ◽  
M. Abe ◽  
Y. Ito ◽  
...  

ABSTRACTWe report on the formation of shallow junctions with high activation in both n+/p and p+/n Ge junctions using ion implantation and Flash Lamp Annealing (FLA). The shallowest junction depths (Xj) formed for the n+/p and p+/n junctions were 7.6 nm and 6.1 nm with sheet resistances (Rs) of 860 ohms/sq. and 704 ohms/sq., respectively. By reducing knocked-on oxygen during ion implantation in the n+/p junctions, Rs was decreased by between 5% and 15%. The lowest Rs observed was 235 ohms/sq. with a junction depth of 21.5 nm. Hall measurements clearly revealed that knocked-on oxygen degraded phosphorus activation (carrier concentration). In the p+/n Ge junctions, we show that ion implantation damage induced high boron activation. Using this technique, Rs can be reduced from 475 ohms/sq. to 349 ohms/sq. These results indicate that the potential for forming ultra-shallow n+/p and p+/n junctions in the nanometer range in Ge devices using FLA is very high, leading to realistic monolithically-integrated Ge CMOS devices that can take us beyond Si technology.


2004 ◽  
Vol 810 ◽  
Author(s):  
B. Colombeau ◽  
A.J. Smith ◽  
N.E.B. Cowern ◽  
B.J. Pawlak ◽  
F. Cristiano ◽  
...  

ABSTRACTThe formation of ultra-shallow junctions (USJs) for future integrated circuit technologies requires preamorphization and high dose boron doping to achieve high activation levels and abrupt profiles. To achieve the challenging targets set out in the semiconductor roadmap, it is crucial to reach a much better understanding of the basic physical processes taking place during USJ processing. In this paper we review current understanding of dopant-defect interactions during thermal processing of device structures – interactions which are at the heart of the dopant diffusion and activation anomalies seen in USJs. First, we recall the formation and thermal evolution of End of Range (EOR) defects upon annealing of preamorphized implants (PAI). It is shown that various types of extended defect can be formed: clusters, {113} defects and dislocation loops. During annealing, these defects exchange Si interstitial atoms and evolve following an Ostwald ripening mechanism. We review progress in developing models based on these concepts, which can accurately predict EOR defect evolution and interstitial transport between the defect layer and the surface. Based on this physically based defect modelling approach, combined with fully coupled multi-stream modelling of dopant diffusion, one can perform highly predictive simulations of boron diffusion and de/re-activation in Ge-PAI boron USJs. Agreement between simulations and experimental data is found over a wide range of experimental conditions, clearly indicating that the driving mechanism that degrades boron junction depth and activation is the dissolution of the interstitial defect band. Finally, we briefly outline some promising methods, such as co-implants and/or vacancy engineering, for further down-scaling of source-drain resistance and junction depth.


1993 ◽  
Vol 36 (7) ◽  
pp. 955-960 ◽  
Author(s):  
Shubneesh Batra ◽  
Kyle Picone ◽  
Keun Hyung Park ◽  
Suryanarayana Bhattacharya ◽  
Sanjay Banerjee ◽  
...  

2011 ◽  
Author(s):  
G. D. Papasouliotis ◽  
L. Godet ◽  
V. Singh ◽  
R. Miura ◽  
H. Ito ◽  
...  

1999 ◽  
Author(s):  
Chahid K. Ghaddar ◽  
John R. Gilbert

Abstract In this work we conduct a number of finite element simulations using the MEMCAD 5.0 system to evaluate the effect of various geometrical and process parameters on the Wheatstone bridge piezoresistive pressure sensor. In particular, results are presented for the following design parameters: the location of the resistors relative to the diaphragm edge; the angular orientation of the resistors; the planar dimensions of the resistors; and finally, the effects of dopant concentration profile and associated junction depth as computed by the limited-diffusion model.


Sign in / Sign up

Export Citation Format

Share Document