Structure-Property Relationships in the xZnO-(1-x)alpha-Fe2O3 Nanoparticle System

2006 ◽  
Vol 957 ◽  
Author(s):  
Monica Sorescu ◽  
Lucian Diamandescu ◽  
Jason Wood

ABSTRACTThe xZnO-(1-x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 hours. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.

2009 ◽  
Vol 1226 ◽  
Author(s):  
Monica Sorescu ◽  
Lucian Diamandescu ◽  
Adelina Tomescu

AbstractThe xZnO-(1-x)alpha-Fe2O3 and xZrO2-(1-x)alpha-Fe2O3 nanoparticles systems have been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 hours. Structural and magnetic characteristics of the zinc and zirconium-doped hematite systems were investigated by X-ray diffraction (XRD), Mössbauer spectroscopy and conductivity measurements. Using the dual absorber method, the recoilless fraction was derived as function of ball milling time for each value of the molar concentration involved. As ZnO is not soluble in hematite in the bulk form, the present study clearly illustrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthetic route allowed us to reach nanometric particle dimensions, which makes these materials very important for gas sensing applications.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Monica Sorescu ◽  
L. Diamandescu ◽  
A. Sanns ◽  
D. Proch ◽  
J. Wood ◽  
...  

ThexTiO2-(1−x)α-Fe2O3ceramic nanoparticles system has been obtained by mechanochemical activation forx= 0.1 and 0.5 and for ball milling times ranging from 2 to 12 hours. Structural and morphological characteristics of the anatase-doped hematite system were investigated by X-ray diffraction (XRD), Mössbauer spectroscopy, and transmission electron microscopy (TEM) combined with electron diffraction (ED). In the XRD patterns, we could evidence the dissolution of anatase in hematite, more pronounced forx= 0.1. The Rietveld structure of the XRD patterns yielded the dependence of the particle size and lattice constants on the amountxof Ti substitutions and as function of the ball milling time. Forx= 0.1, we observed line broadening of the Mössbauer resonances and corresponding fit with several subspectra. Forx= 0.5, it can be observed that the central doublet corresponding to superparamagnetic particles becomes more prominent. The ball milling route allowed us to reach nanometric particle dimensions, which would make the materials very promising for catalytic and gas sensing applications.


2005 ◽  
Vol 900 ◽  
Author(s):  
Monica Sorescu ◽  
Lucian Diamandescu ◽  
Doina Tarabasanu-Mihaila

ABSTRACTStructural and morphological characteristics of (1-x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. On the basis of the Rietveld structure refinements of the XRD spectra at low tin content, it was found that Sn4+ partially substitutes for Fe3+ at the octahedral sites. The mean particle dimension decreases from 70 to 6 nm as the molar fraction x increases. The estimated solubility limits in the system of tin-doped hematite nanoparticles synthesized under hydrothermal conditions are x<0.2 for Sn4+ in α-Fe2O3 and x>0.7 for Fe3+ in SnO2.


Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


2020 ◽  
Vol 235 (6-7) ◽  
pp. 213-223
Author(s):  
Hilke Petersen ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractThe temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered $P\overline{4}3n$ (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in $P\overline{4}3n$. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from $P\overline{4}3n$ to $Pm\overline{3}n$, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.


2004 ◽  
Vol 844 ◽  
Author(s):  
David J. Scurr ◽  
Stephen J. Eichhorn

ABSTRACTThis study uses various characterisation techniques on the razor shell (Ensis siliqua), to relate the shell's microstructure to its mechanical properties. Scanning electron microscopy (SEM) has shown that the outer and inner regions of the shell are composed of simple and complex crossed lamellar microstructures respectively. These layers are interspersed by prismatic layers of a completely different crystallographic orientation. Nanoindentation and microhardness measurements have shown that the structure is anisotropic, and Raman band shifts have been observed within these indented/deformed areas of shell, showing that the microstructure deforms rather than generating surface damage. The use of energy variable synchrotron X-ray diffraction has shown that the calcium carbonate crystals of the shell are preferentially orientated as a function of depth and that opposing residual stresses exist at the outer and inner regions of the shell. This study has analysed several microstructural features of the shell and provided an insight into how they prevent failure of the material.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Olha Zhak ◽  
Oksana Karychort ◽  
Volodymyr Babizhetskyy ◽  
Chong Zheng

Abstract The title compound was prepared from the pure elements by sintering. The crystal structure was investigated by means of powder X-ray diffraction data. Ho5Pd19P12 exhibits the hexagonal Ho5Ni19P12-type structure with space group P 6 ‾ 2 m $P&#x203e;{6}2m$ , a = 13.1342(2), c = 3.9839(1) Å, R I = 0.060, R p = 0.080. The crystal structure can be described as a combination of two types of the structural units, [HoPd6P3] and [Ho3Pd10P6], respectively, mutually displaced by 1/2 along the crystallographic c axis. Quantum chemical calculations have been performed to analyze the electronic structure and provide deeper insight into the structure-property relationships. The results of the quantum chemical calculations indicate that the material features metallic bonding between Ho and Pd and covalent bonding between Pd and P.


2016 ◽  
Vol 3 (10) ◽  
pp. 1306-1316 ◽  
Author(s):  
M. Węcławik ◽  
A. Gągor ◽  
R. Jakubas ◽  
A. Piecha-Bisiorek ◽  
W. Medycki ◽  
...  

Two hybrid crystals imidazolium iodoantimonate(iii) and iodobismuthate(iii) have been synthesized and characterized in a wide temperature range (100–350 K) by means of X-ray diffraction, dielectric spectroscopy, proton magnetic resonance, FT-IR spectroscopy and optical observations.


2019 ◽  
Vol 14 (31) ◽  
pp. 1-12
Author(s):  
Jamal M. Rzaij

Nanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C, 100°C, 150°C and 200°C) was calculated.


Sign in / Sign up

Export Citation Format

Share Document