Soft-chemistry Route to P-I-N Heterostructured Quantum Dot Electroluminescence Device: All Solution-processed Polymer-Inorganic Hybrid QD-EL Device

2006 ◽  
Vol 959 ◽  
Author(s):  
Soon-Jae Kwon ◽  
Kyung-Sang Cho ◽  
Byoung-Lyong Choi ◽  
Byung-Ki Kim

ABSTRACTp-i-n heterostructured quantum-dot electroluminescence (QD-EL) device was fabricated by soft-chemical process, which shows a low turn-on voltage comparable to OLEDs. To construct the multilayered device structure, p-type polymer semiconductor was deposited on the ITO glass by sequential process of coating and thermal curing, thereupon a few monolayers of QD was spin-coated. n-type metal-oxide film was deposited on top of the QD luminescence layer by sol-gel method, providing a facile and low-cost route for the ETL fabrication. Prior to solution-processed ETL construction, a post-treatment is performed using cross-linking agent, in order to chemically-immobilize the QDs. As a cathodic electrode, relatively air-stable aluminum was deposited. The constituent material as well as the electronic band structure of the integrated device guarantees operating stability in air and low turn-on voltage.

2012 ◽  
Author(s):  
Ethan J. D. Klem ◽  
Jay Lewis ◽  
Christopher Gregory ◽  
Garry Cunningham ◽  
Dorota Temple

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 318 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Naoto Shirahata

Here we report a quantum dot light emitting diode (QLED), in which a layer of colloidal silicon quantum dots (SiQDs) works as the optically active component, exhibiting a strong electroluminescence (EL) spectrum peaking at 620 nm. We could not see any fluctuation of the EL spectral peak, even in air, when the operation voltage varied in the range from 4 to 5 V because of the possible advantage of the inverted device structure. The pale-orange EL spectrum was as narrow as 95 nm. Interestingly, the EL spectrum was narrower than the corresponding photoluminescence (PL) spectrum. The EL emission was strong enough to be seen by the naked eye. The currently obtained brightness (∼4200 cd/m2), the 0.033% external quantum efficiency (EQE), and a turn-on voltage as low as 2.8 V show a sufficiently high performance when compared to other orange-light-emitting Si-QLEDs in the literature. We also observed a parasitic emission from the neighboring compositional layer (i.e., the zinc oxide layer), and its intensity increased with the driving voltage of the device.


2015 ◽  
Vol 1109 ◽  
pp. 461-465 ◽  
Author(s):  
Nurbaya Zainal ◽  
Mohd Hafiz Wahid ◽  
Mohammad Rusop

Performance of lead titanate, (PbTiO3) thin films have been successfully investigated on microstructural properties, I-V characteristic, dielectric properties, and ferroelectric properties. PbTiO3offers variety of application as transducer, ferroelectric random access memory, transistor, high performance capacitor, sensor, and many more due to its ferroelectric behavior. Preparation of the films are often discussed in order to improve the structural properties, like existence of grain boundaries, particle uniformity, presents of microcrack films, porosities, and many more. Yet, researchers still prepare PbTiO3thin films at high crystallization temperature, certainly above than 600 ̊C to obtain single crystal perovskite structure that would be the reason to gain high spontaneous polarization behavior. Although this will results to high dielectric constant value, the chances that leads to high leakage current is a major failure in device performance. Thus, preparation the thin films at low annealing temperature quite an essential study which is more preferable deposited on low-cost soda lime glass. The study focuses on low annealing temperature of PbTiO3thin films through sol-gel spin coating method and undergo for dielectric and I-V measurements.


2019 ◽  
Vol 123 (40) ◽  
pp. 24890-24898 ◽  
Author(s):  
Andrew J. Yost ◽  
Thilini K. Ekanayaka ◽  
Gautam Gurung ◽  
Gaurab Rimal ◽  
Sabit Horoz ◽  
...  

2014 ◽  
Vol 1664 ◽  
Author(s):  
Xuewen Fu ◽  
Zhimin Liao ◽  
Dapeng Yu

ABSTRACTElastic engineering strain has been regarded as a low-cost and continuously variable manner for altering the physical and chemical properties of materials, and it becomes even more important at low-dimensionality because at micro/nanoscale, materials/structures can usually bear exceptionally high elastic strains before failure. The elastic strain effects are therefore greatly magnified in micro/nanoscale structures and should be of great potential in the design of novel functional devices. The purpose of this overview is to present a summary of our recently progress in the energy band engineering of elastically bent ZnO micro/nanowires. First, we present the electronic and mechanical coupling effect in bent ZnO nanowires. Second, we summary the bending strain gradient effect on the near-band-edge (NBE) emission photon energy of bent ZnO micro/nanowires. Third, we show that the strain can induce exciton fine-structure splitting and shift in ZnO microwires. Our recent progresses illustrate that the electronic band structure of ZnO micro/nanowires can be dramatically tuned by elastic strain engineering, and point to potential future applications based on the elastic strain engineering of ZnO micro/nanowires.


RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 26322-26327 ◽  
Author(s):  
Tao Ding ◽  
Ning Wang ◽  
Chen Wang ◽  
Xinghua Wu ◽  
Wenbo Liu ◽  
...  

The introduction of CuSCN as the hole injection material significantly improved the turn-on voltage of quantum dot-based LEDs.


2017 ◽  
Vol 5 (45) ◽  
pp. 23960-23966 ◽  
Author(s):  
Kunyuan Lu ◽  
Yongjie Wang ◽  
Jianyu Yuan ◽  
Zequn Cui ◽  
Guozheng Shi ◽  
...  

New-generation solar cells based on colloidal lead chalcogenide (PbX) quantum dots (CQDs) are promising low-cost solution-processed photovoltaics.


2021 ◽  
Author(s):  
Chai Won Kim ◽  
Ji Hye Lee ◽  
Seunguk Cho ◽  
Hyung Jong Kim ◽  
Jin Hyo Hwang ◽  
...  

Herein, a novel hole transport polymer, P-CzAc, for solution-processed green quantum dot light-emitting diodes (QD-LEDs) was synthesized. P-CzAc consists of a polystyrene backbone and 10-(9H-carbazol-3-yl)-9,9-dimethyl-9,10-dihydroacridine as side-chain pendants. The design...


2001 ◽  
Vol 677 ◽  
Author(s):  
Olga L. Lazarenkova ◽  
Alexander A. Balandin

ABSTRACTWe analyze the electron energy spectrum in three-dimensional regimented arrays of semiconductor quantum dots. The coupling among quantum dots results in formation of three- dimensional electron mini-bands. Changing the size of quantum dots, inter-dot distance, barrier height and regimentation, one can control the electronic band structure of this quantum dot superlattice, which can also be referred to as quantum dot crystal due to its structure and energy spectrum that resemble those of a real crystal. Results of computer simulations carried out for a tetragonal InAs/GaAs quantum dot superlattice show that the electron density of states, effective mass tensor and other properties are different from those of bulk and conventional quantum well superlattices.


Sign in / Sign up

Export Citation Format

Share Document