Extracting the Device Parameters from Organic Thin Film Transistors

2006 ◽  
Vol 965 ◽  
Author(s):  
Eung Seok Park ◽  
Pil Soo Kang ◽  
Gyu Tae Kim

ABSTRACTOrganic thin film transistors(OTFTs) were simulated by a SPICE model adopted in hydrogenated amorphous TFTs(a-Si:H). The gate voltage-dependent mobilities were assumed to fit the representative current-voltage characteristics. The optimal fitting procedures were suggested to compare the experimental data with the mathematical expressions used in the amorphous TFTs. Each SPICE parameter explains the gate dependent mobilities in OTFTs originating from the distribution of trap sites for the hopping conduction.

2021 ◽  
Author(s):  
Jakob Prüfer ◽  
Jakob Leise ◽  
Aristeidis Nikolaou ◽  
James W. Borchert ◽  
Ghader Darbandy ◽  
...  

<div>We present analytical physics-based compact models for the Schottky barriers at the interfaces between the organic semiconductor and the source and drain contacts in organic thin-film transistors (TFTs) fabricated in the coplanar and the staggered device architecture, and we illustrate the effect of these Schottky barriers on the current-voltage characteristics of the TFTs. The model for the source barrier explicitly takes into account the field-dependent barrier lowering due to image charges. Potential solutions have been derived by applying the Schwarz-Christoffel transformation, leading to expressions for the electric field at the source barrier and for the contact resistance at the source contact. With regard to the drain barrier, a generic compact-modeling scheme based on the current-voltage characteristics of a barrier-less TFT is introduced that can be applied to any compact dc model. Finally, both models are incorporated into an existing charge-based compact dc model and verified against the results of measurements performed on coplanar and staggered organic TFTs with channel lengths ranging from 0.5 μm to 10.5 μm.</div>


2021 ◽  
Author(s):  
Jakob Prüfer ◽  
Jakob Leise ◽  
Aristeidis Nikolaou ◽  
James W. Borchert ◽  
Ghader Darbandy ◽  
...  

<div>We present analytical physics-based compact models for the Schottky barriers at the interfaces between the organic semiconductor and the source and drain contacts in organic thin-film transistors (TFTs) fabricated in the coplanar and the staggered device architecture, and we illustrate the effect of these Schottky barriers on the current-voltage characteristics of the TFTs. The model for the source barrier explicitly takes into account the field-dependent barrier lowering due to image charges. Potential solutions have been derived by applying the Schwarz-Christoffel transformation, leading to expressions for the electric field at the source barrier and for the contact resistance at the source contact. With regard to the drain barrier, a generic compact-modeling scheme based on the current-voltage characteristics of a barrier-less TFT is introduced that can be applied to any compact dc model. Finally, both models are incorporated into an existing charge-based compact dc model and verified against the results of measurements performed on coplanar and staggered organic TFTs with channel lengths ranging from 0.5 μm to 10.5 μm.</div>


2008 ◽  
Vol 47 (4) ◽  
pp. 3174-3178 ◽  
Author(s):  
Keum-Dong Jung ◽  
Yoo Chul Kim ◽  
Byeong-Ju Kim ◽  
Byung-Gook Park ◽  
Hyungcheol Shin ◽  
...  

1997 ◽  
Vol 467 ◽  
Author(s):  
M. S. Shur ◽  
H. C Slade ◽  
T. Ytterdal ◽  
L. Wang ◽  
Z. Xu ◽  
...  

ABSTRACTWe have developed analytic SPICE models for hydrogenated amorphous silicon (a-Si:H) and polysilicon (poly-Si) thin film transistors (TFTs) which accurately model all regimes of operation, are temperature dependent to 150°C, and scale with device dimensions. These models have been presented in [1, 2]. In this work, we compare the current-voltage characteristics predicted by our models with the measured characteristics from TFTs fabricated at different foundries. We compare the extracted device parameters in order to evaluate the robustness of our models and to determine a suitable default parameter set. We also use the models to examine the effects of device scaling for short channel TFTs. The models can be accessed using the circuit simulator AIM-Spice [3], which is available at http://nina.ecse.rpi.edu/aimspice.


2020 ◽  
Vol 91 (3) ◽  
pp. 30201
Author(s):  
Hang Yu ◽  
Jianlin Zhou ◽  
Yuanyuan Hao ◽  
Yao Ni

Organic thin film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8BTBT) and copper (Cu) electrodes were fabricated. For improving the electrical performance of the original devices, the different modifications were attempted to insert in three different positions including semiconductor/electrode interface, semiconductor bulk inside and semiconductor/insulator interface. In detail, 4,4′,4′′-tris[3-methylpheny(phenyl)amino] triphenylamine (m-MTDATA) was applied between C8BTBTand Cu electrodes as hole injection layer (HIL). Moreover, the fluorinated copper phthalo-cyanine (F16CuPc) was inserted in C8BTBT/SiO2 interface to form F16CuPc/C8BTBT heterojunction or C8BTBT bulk to form C8BTBT/F16CuPc/C8BTBT sandwich configuration. Our experiment shows that, the sandwich structured OTFTs have a significant performance enhancement when appropriate thickness modification is chosen, comparing with original C8BTBT devices. Then, even the low work function metal Cu was applied, a normal p-type operate-mode C8BTBT-OTFT with mobility as high as 2.56 cm2/Vs has been fabricated.


2010 ◽  
Vol 130 (2) ◽  
pp. 161-166
Author(s):  
Yoshinori Ishikawa ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
Ken Tsutsui

2013 ◽  
Vol E96.C (11) ◽  
pp. 1360-1366 ◽  
Author(s):  
Ichiro FUJIEDA ◽  
Tse Nga NG ◽  
Tomoya HOSHINO ◽  
Tomonori HANASAKI

2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


Sign in / Sign up

Export Citation Format

Share Document