The Optical and Electrical Properties of SiOx(x<2) Thin Films Prepared by Pulsed Laser Deposition Technique

2007 ◽  
Vol 997 ◽  
Author(s):  
Byoung Youl Park ◽  
Sol Lee ◽  
Chang Hyun Bae ◽  
Seung Min Park ◽  
Kyoungwan Park

AbstractSiOx (x<2) films were deposited in an O2 atmosphere using Si target in a pulsed laser deposition system. Post-annealing process was employed in an O2 atmosphere to form the nanometer-sized Si crystallites embedded in the SiO2 films. The transmission electron microscope analysis shows the existence of crystalline silicon nano-dots with diameters ranging from 2 to 4 nm. Also, the clear separation of Si and SiO2 phases can be seen in the X-ray photoemission spectra. Photoluminescence peak from the annealed films was obtained, which is attributed to the quantum confinement effect of the Si nano-dots. C-V measurements of the metal-oxide-silicon (MOS) structure containing the silicon nano-dots in the oxide layer were performed to investigate the charging/discharging behavior of the silicon nano-dots. The maximum program window of the MOS was measured to be4.1V under ±5V sweep.

2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


1999 ◽  
Vol 14 (6) ◽  
pp. 2355-2358 ◽  
Author(s):  
M. H. Corbett ◽  
G. Catalan ◽  
R. M. Bowman ◽  
J. M. Gregg

Pulsed laser deposition has been used to make two sets of lead magnesium niobate thin films grown on single-crystal h100j MgO substrates. One set was fabricated using a perovskite-rich target while the other used a pyrochlore-rich target. It was found that the growth conditions required to produce almost 100% perovskite Pb(Mg1/3Nb2/3)O3 (PMN) films were largely independent of target crystallography. Films were characterized crystallographically using x-ray diffraction and plan view transmission electron microscopy, chemically using energy dispersive x-ray analysis, and electrically by fabricating a planar thin film capacitor structure and monitoring capacitance as a function of temperature. All characterization techniques indicated that perovskite PMN thin films had been successfully fabricated.


2000 ◽  
Vol 623 ◽  
Author(s):  
P.W. Yip ◽  
K.H. Wong

AbstractThin films of SrVO3 have been grown on (100)LaAlO3 and TiN buffered (100)Si substrates by pulsed laser deposition. The films were deposited in temperature range of 450°C – 750°C and under ambient oxygen pressure between 101−6 and 101−2 Torr. Their structural properties were characterized using a four-circle x-ray diffractometer. High quality SrVO3 films were obtained at growth temperatures above 500°C without post annealing. Heteroepitaxial relationship of < 100 >SrVo3 ∥ < 100 >LaAOl3 and <100>SrVo3∥ < 100 >TiN ∥ < 100 >Si were observed for films deposited at ≤ 550°C. X-ray photoelectron spectroscopic studies of the films suggest that the vanadium is mainly tetravalent and pentavalent. Charge transport measurements show that the films vary from semiconducting to highly conducting for different growth conditions. Resistivity of a few micro-ohm cm was recorded for some of the epitaxial SrVO3 films.


2001 ◽  
Vol 16 (9) ◽  
pp. 2467-2470 ◽  
Author(s):  
J. C. Caylor ◽  
M. S. Sander ◽  
A. M. Stacy ◽  
J. S. Harper ◽  
R. Gronsky ◽  
...  

Heteroepitaxial growth of the cubic skutterudite phase CoSb3 on (001) InSb substrates was achieved by pulsed laser deposition using a substrate temperature of 270 °C and a bulk CoSb3 target with 0.75 at.% excess Sb. An InSb (a0 = 4 0.6478 nm) substrate was chosen for its lattice registry with the antimonide skutterudites (e.g., CoSb3 with a = 0 4 0.9034 nm) on the basis of a presumed 45° rotated relationship with the InSb zinc blende structure. X-ray diffraction and transmission electron microscopy confirmed both the structure of the films and their epitaxial relationship: (001)CoSb3 ∥ (001)InSb; [100]CoSb3 ∥ [110]InSb.


1995 ◽  
Vol 410 ◽  
Author(s):  
J. E. Cosgrove ◽  
P. A. Rosenthal ◽  
D. Hamblen ◽  
D. B. Fenner ◽  
C. Yang

ABSTRACTWe have grown thin films of SiC by pulsed laser deposition on silicon (100) and vicinal and non-vicinal 6H SiC (0001) substrates using a quadrupled YAG laser and a high purity dense polycrystalline SiC target. Epitaxy on all three substrate types was confirmed by x-ray diffraction, transmission electron microscopy and electron diffraction. Composition of the films was measured by Rutherford backscattering spectrometry and Scanning Auger Microprobe.


1999 ◽  
Vol 580 ◽  
Author(s):  
A. Kvit ◽  
A.K. Sharma ◽  
J. Narayan

AbstractEpitaxial Cu/TiN heterostructures were grown on hexagonal (6H)-SiC(0001) substrate by pulsed laser deposition using the domain epitaxy, where integral multiple of lattice constant or major planes match across the interface1. Such layers are needed for metallization of SiC bond integrated circuit devices. These Cu and TiN layers on SiC(0001) were grown at 600 degrees centigrade in a high vacuum (<10−6 Torr). This structure was characterized using X-ray diffraction technique and transmission electron microscopy. The X-ray diffraction recorded only (111) and (222) reflection of Cu and TiN. The full-width at half maximum of ω-rocking curve of (111) reflection of Cu (0.4 degree) and TEM results indicated a high epitaxial quality. The plan view transmission electron micrograph shows that Cu forms three-dimensional islands indicating that the Cu/TiN interface energy is very high. The island size varies from 0.2 to 2 μm. Analysis of selective aperture diffraction patterns and cross-sectional transmission electron microscopy, including high-resolution imaging, showed relationships Cu(111)//TiN(111)//6H-SiC(0001). The TiN/SiC an interface was locally atomically sharp and free from secondary phases or obvious interdiffusion. The typical defects in the TiN(111) layers consisted of threading domain boundaries. The mechanism of three-dimension growth of copper on TiN layers was discussed.


2011 ◽  
Vol 184 (3-6) ◽  
pp. 240-244 ◽  
Author(s):  
G. Monaco ◽  
M. Suman ◽  
D. Garoli ◽  
M.G. Pelizzo ◽  
P. Nicolosi

2013 ◽  
Vol 634-638 ◽  
pp. 2150-2154 ◽  
Author(s):  
Rita Sundari ◽  
Tang Ing Hua ◽  
M. Rusli Yosfiah

A citric acid anionic surfactant has been applied for nano manganese ferrite (MnFeO3) fabrication using sol gel method. The calcinations have been varied for 300, 600 and 800oC. The UVDR (UV-Vis Diffused Reflectance) analysis shows a high absorptive band gap after 400 nm for the 600oC calcinated MnFeO3. The DTA (Differential Thermal Analysis) profiles exhibit remarkably trapped volatile matters (H2O, CO2, and NO2) in the fabricated MnFeO3 under sol gel heat treatment at 100oC and the peaks disappeared as the calcination increased to 600oC. As the temperature elevated from 100 to 300oC, the absorption peaks of volatile components are disappeared as demonstrated clearly by the FTIR (Fourier Transform Infrared) spectra of the fabricated material, which 3393 cm-1 corresponded to OH group, 1624 cm-1 to CO group, and 1384 cm-1 to NO group. The XRD (X-Ray Diffraction) spectra show clearly the alteration process from amorphous to crystalline structure as the calcinations increased from 300 to 600oC. In addition, the TEM (Transmission Electron Microscope) analysis exhibits parts of the fabricated MnFeO3 found in cubic nano size of 15-40 nm under interested calcinations and the result is in agreement with that obtained by XRD investigation.


1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


Sign in / Sign up

Export Citation Format

Share Document