scholarly journals Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Microstructures by Soft Lithography for Tissue Engineering and Cell Biology Applications

2007 ◽  
Vol 1002 ◽  
Author(s):  
Daniel Gallego ◽  
Nicholas J. Ferrell ◽  
Derek J. Hansford

ABSTRACTA method for the fabrication of piezoelectric polyvinylidene fluoride (PVDF) microstructures is described. Embossed and individual features with highly defined geometries at the microscale were obtained using soft lithography-based techniques. Various structure geometries were obtained, including pillars (three different aspect ratios), parallel lines, and criss-crossed lines. SEM characterization revealed uniform patterns with dimensions ranging from 2 μm ñ 15 μm. Human osteosarcoma (HOS) cell cultures were used to evaluate the cytocompatibility of the microstructures. SEM and fluorescence microscopy showed adequate cell adhesion, proliferation, and strong interaction with tips and corners of the microdiscontinuities. Microfabricated piezoelectric PVDF structures could find applications in the fabrication of mechanically active tissue engineering scaffolds, and the development of dynamic sensors at the cellular and subcellular levels.

2015 ◽  
Vol 3 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Zhiyong Li ◽  
Yunlan Su ◽  
Baoquan Xie ◽  
Xianggui Liu ◽  
Xia Gao ◽  
...  

A novel physically linked double-network (DN) hydrogel was prepared by natural polymer KGM and synthetic polymer PAAm. The DN hydrogels exhibit good mechanical properties, cell adhesion properties, and can be freely shaped, making such hydrogels promising for tissue engineering scaffolds.


2013 ◽  
Vol 9 (6) ◽  
pp. 6928-6935 ◽  
Author(s):  
N.M.S. Bettahalli ◽  
I.T.M. Arkesteijn ◽  
M. Wessling ◽  
A.A. Poot ◽  
D. Stamatialis

2019 ◽  
Vol 43 (25) ◽  
pp. 9989-10002 ◽  
Author(s):  
Shuang Zheng ◽  
Yonghong Guan ◽  
Haichi Yu ◽  
Ge Huang ◽  
Changjun Zheng

Ideal bone tissue engineering scaffolds should be biocompatible, biodegradable, and mechanically robust and have the ability to regulate cell function.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5278
Author(s):  
María Dolores Bermejillo Barrera ◽  
Francisco Franco-Martínez ◽  
Andrés Díaz Lantada

Design requirements for different mechanical metamaterials, porous constructions and lattice structures, employed as tissue engineering scaffolds, lead to multi-objective optimizations, due to the complex mechanical features of the biological tissues and structures they should mimic. In some cases, the use of conventional design and simulation methods for designing such tissue engineering scaffolds cannot be applied because of geometrical complexity, manufacturing defects or large aspect ratios leading to numerical mismatches. Artificial intelligence (AI) in general, and machine learning (ML) methods in particular, are already finding applications in tissue engineering and they can prove transformative resources for supporting designers in the field of regenerative medicine. In this study, the use of 3D convolutional neural networks (3D CNNs), trained using digital tomographies obtained from the CAD models, is validated as a powerful resource for predicting the mechanical properties of innovative scaffolds. The presented AI-aided or ML-aided design strategy is believed as an innovative approach in area of tissue engineering scaffolds, and of mechanical metamaterials in general. This strategy may lead to several applications beyond the tissue engineering field, as we analyze in the discussion and future proposals sections of the research study.


2004 ◽  
Vol 820 ◽  
Author(s):  
Yang Sun ◽  
Nicholas Ferrell ◽  
Derek J. Hansford

AbstractTissue engineering scaffolds with precisely controlled geometries, particularly with surface features smaller than typical cell dimensions (1-10μm), can improve cellular adhesion and functionality. In this paper, soft lithography was used to fabricate polydimethylsiloxane (PDMS) stamps of arrays of parallel 5μm wide, 5μm deep grooves separated by 45 μm ridges, and an orthogonal grid of lines with the same geometry. Several methods were compared for the fabrication of 3-D multi-layer polycaprolactone (PCL) scaffolds with precise features. First, micromolding in capillaries (MIMIC) was used to deliver the polymer into the small grooves by capillarity; however the resultant lines were discontinuous and not able to form complete lines. Second, spin coating and oxygen plasma were combined to build 3-D scaffolds with the line pattern. The resultant scaffolds had good alignment and adhesion between layers; however, the upper layer collapsed due to the poor mechanical rigidity. Finally, a new multi-layer micromolding (MMM) method was developed and successfully applied with the grid pattern to fabricate 3-D scaffolds. Scanning electron microscopy (SEM) characterization showed that the multi-layered scaffolds had high porosity and precisely controlled 3-D structures.


2004 ◽  
Vol 823 ◽  
Author(s):  
Yang Sun ◽  
Nicholas Ferrell ◽  
Derek J. Hansford

AbstractTissue engineering scaffolds with precisely controlled geometries, particularly with surface features smaller than typical cell dimensions (1-10μm), can improve cellular adhesion and functionality. In this paper, soft lithography was used to fabricate polydimethylsiloxane (PDMS) stamps of arrays of parallel 5μm wide, 5μm deep grooves separated by 45 μm ridges, and an orthogonal grid of lines with the same geometry. Several methods were compared for the fabrication of 3-D multi-layer polycaprolactone (PCL) scaffolds with precise features. First, micromolding in capillaries (MIMIC) was used to deliver the polymer into the small grooves by capillarity; however the resultant lines were discontinuous and not able to form complete lines. Second, spin coating and oxygen plasma were combined to build 3-D scaffolds with the line pattern. The resultant scaffolds had good alignment and adhesion between layers; however, the upper layer collapsed due to the poor mechanical rigidity. Finally, a new multi-layer micromolding (MMM) method was developed and successfully applied with the grid pattern to fabricate 3-D scaffolds. Scanning electron microscopy (SEM) characterization showed that the multi-layered scaffolds had high porosity and precisely controlled 3-D structures.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document