Carbon Nanotube Based Electrically Conductive and Optically Transparent Thin Films

2007 ◽  
Vol 1018 ◽  
Author(s):  
Zhongrui Li ◽  
Enkeleda Dervishi ◽  
Viney Saini ◽  
Alexandru R. Biris ◽  
Dan Lupu ◽  
...  

AbstractHighly electrically conductive and optically transparent thin films were fabricated on conventional glass substrates using different purified carbon nanotubes, single-wall (SWNT), double-wall (DWNT), and multi-wall (MWNT) carbon nanotubes. The starting carbon nanotube materials were first made into homogenous solution with either sodium cholate or dimethylformamide. Two different fabrication approaches, airbrushing and membrane filtration methods, were used and compared. The chemical modification of thionyl chloride was employed to further improve the optical and electric performance of the SWNT films. Additionally, the temperature dependence of the resistance measured on carbon nanotube networks has been investigated.

2015 ◽  
Vol 3 (36) ◽  
pp. 9369-9378 ◽  
Author(s):  
Li-Chuan Jia ◽  
Ding-Xiang Yan ◽  
Cheng-Hua Cui ◽  
Xin Jiang ◽  
Xu Ji ◽  
...  

A segregated structure results in an EMI SE up to 46.4 dB in CNT/polyethylene composites with only 5 wt% CNTs.


Soft Matter ◽  
2017 ◽  
Vol 13 (37) ◽  
pp. 6390-6395 ◽  
Author(s):  
Ye Rim Lee ◽  
Hyungho Kwon ◽  
Do Hoon Lee ◽  
Byung Yang Lee

Electrodes consisting of silver nanowires and carbon nanotubes enable a dielectric elastomer actuator to become highly stretchable and optically transparent.


2014 ◽  
Vol 5 ◽  
pp. 1575-1579 ◽  
Author(s):  
Christoph Nick ◽  
Sandeep Yadav ◽  
Ravi Joshi ◽  
Christiane Thielemann ◽  
Jörg J Schneider

The growth of cortical neurons on three dimensional structures of spatially defined (structured) randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT) is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.


Small ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1-1 ◽  
Author(s):  
Allen L. Ng ◽  
Yong Sun ◽  
Lyndsey Powell ◽  
Chuan-Fu Sun ◽  
Chien-Fu Chen ◽  
...  

2006 ◽  
Vol 963 ◽  
Author(s):  
Vitor R. Coluci ◽  
Socrates O. Dantas ◽  
Ado Jorio ◽  
Douglas s Galvao

ABSTRACTEletronic and mechanical properties of ordered carbon nanotube networks are studied using molecular dynamics simulations and tight-binding calculations. These networks are formed by single walled carbon nanotubes (SWNT) regularly connected by junctions. The use of different types of junctions (“Y”-, “X”-like junctions, for example) allows the construction of networks with different symmetries. These networks can be very flexible and the elastic deformation was associated with two main deformation mechanisms (bending and stretching ) of the constituents SWNTs. Rolling up the networks, “super” carbon nanotubes can be constructed. These super-tubes share some of the main electronic features of the SWNT which form them but important changes are predicted (e.g. reduction of bandgap value). Simulations of their deformations under tensile stress have revealed that the super-tubes are softer than the corresponding SWNT and that their rupture occur in higher strain values.


2018 ◽  
Vol 60 (12) ◽  
pp. 2649-2655 ◽  
Author(s):  
I. A. Tambasov ◽  
A. S. Voronin ◽  
N. P. Evsevskaya ◽  
M. N. Volochaev ◽  
Yu. V. Fadeev ◽  
...  

2016 ◽  
Vol 685 ◽  
pp. 569-573
Author(s):  
Sergey M. Lebedev ◽  
Olga S. Gefle ◽  
Ernar T. Amitov ◽  
Mikhail R. Predtechensky ◽  
Alexander E. Bezrodny

Novel electrically conductive SWCNT-reinforced composites were studied in this work. Incorporating SWCNT into CB/polymer composites provides lowering the percolation threshold. Adding a small quantity of single-walled carbon nanotubes into CB/polymer composites allows reducing CB content in electrically conductive composites and improving rheological and processing properties.


2013 ◽  
Vol 543 ◽  
pp. 39-42 ◽  
Author(s):  
Petr Slobodian ◽  
Pavel Riha ◽  
Petr Saha

Monitoring body kinematics and joint flexion has fundamental relevance in orthopedics and rehabilitation. The used sensing element is prepared from a highly-deformable polymer composite composed of a network of entangled electrically-conductive carbon nanotubes embedded in elastic polyurethane. The composite is prepared by an innovative procedure in which the non-woven polyurethane filtering membrane and the carbon nanotube cake are integrated by compression molding. As an example of the composite use as a strain sensor, human knee flexion and its cyclic movement is monitored, that may be applicable in athletic training as well as in orthopedics and rehabilitation.


2017 ◽  
Vol 10 (10) ◽  
pp. 2168-2179 ◽  
Author(s):  
Bradley A. MacLeod ◽  
Noah J. Stanton ◽  
Isaac E. Gould ◽  
Devin Wesenberg ◽  
Rachelle Ihly ◽  
...  

Polymer-free semiconducting carbon nanotube networks demonstrate unprecedented equivalent n- and p-type thermoelectric performance.


Sign in / Sign up

Export Citation Format

Share Document