Entangled Network of Carbon Nanotubes Embedded in Polyurethane and its Use for Body Kinematics and Joint Flexion Sensing

2013 ◽  
Vol 543 ◽  
pp. 39-42 ◽  
Author(s):  
Petr Slobodian ◽  
Pavel Riha ◽  
Petr Saha

Monitoring body kinematics and joint flexion has fundamental relevance in orthopedics and rehabilitation. The used sensing element is prepared from a highly-deformable polymer composite composed of a network of entangled electrically-conductive carbon nanotubes embedded in elastic polyurethane. The composite is prepared by an innovative procedure in which the non-woven polyurethane filtering membrane and the carbon nanotube cake are integrated by compression molding. As an example of the composite use as a strain sensor, human knee flexion and its cyclic movement is monitored, that may be applicable in athletic training as well as in orthopedics and rehabilitation.

2016 ◽  
Vol 685 ◽  
pp. 569-573
Author(s):  
Sergey M. Lebedev ◽  
Olga S. Gefle ◽  
Ernar T. Amitov ◽  
Mikhail R. Predtechensky ◽  
Alexander E. Bezrodny

Novel electrically conductive SWCNT-reinforced composites were studied in this work. Incorporating SWCNT into CB/polymer composites provides lowering the percolation threshold. Adding a small quantity of single-walled carbon nanotubes into CB/polymer composites allows reducing CB content in electrically conductive composites and improving rheological and processing properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wei Qiu ◽  
Shi-Lei Li ◽  
Wei-lin Deng ◽  
Di Gao ◽  
Yi-Lan Kang

A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).


2013 ◽  
Vol 543 ◽  
pp. 43-46
Author(s):  
Anežka Lengálová ◽  
Petr Slobodian ◽  
Robert Olejnik ◽  
Pavel Riha

A sensing element made of conductive composite created by an entangled network of electrically conductive carbon nanotubes embedded in polyurethane was used for simultaneous measurements of the pressure between the shoe and floor as well as the extension of the leg at the knee joint during marching. The results recorded as sensor resistance change show reasonable reversibility of the basic sensor characteristics, which gives potential for practical applications.


Author(s):  
Luiza В. Atlukhanova ◽  
Igor V. Dolbin ◽  
Georgii V. Kozlov

Целью настоящей работы является раздельное определение модуля упругос-ти компонент нанокомпозитов полидициклопентандиен/многослойные углеродные на-нотрубки, а именно, нанонаполнителя и межфазных областей. Для достижения этой целииспользована микромеханическая модель.Выполненные оценки продемонстрировали, что модуль упругости углеродных нанотрубокв полимерной матрице нанокомпозита, т. е., их агрегатов, приблизительно на два поряд-ка меньше номинальной величины этого параметра для отдельной углеродной нанотруб-ки, тогда как модуль упругости межфазных областей примерно в два раза выше модуляупругости матричного полимера. Эти данные ясно демонстрируют некорректность при-менения номинальных характеристик нанонаполнителя, в частности, его модуля упру-гости, для определения соответствующих показателей нанокомпозита. Однако использо-вание реальных величин модуля упругости агрегатов углеродных нанотрубок в рамкахпростого правила смесей позволяет достаточно точное описание этого параметра в случаенанокомпозитов. Важно отметить, что модуль упругости углеродных нанотрубок в элас-томерной матрице существенно меньше этого параметра в стеклообразной матрице дляодного и того же нанокомпозита. Это означает, что указанный параметр определяется нетолько размерами и структурой агрегатов нанонаполнителя, но также и другими факто-рами, в частности, жесткостью окружающей агрегат полимерной матрицы, эффективнос-тью переноса приложенного к образцу механического напряжения от полимерной мат-рицы к нанонаполнителю и т. п.Применение модифицированного правила смесей для описания модуля упругости нано-композитов показало, что включенный в него, так называемый, фактор эффективностидлины в случае анизотропного нанонаполнителя существенно меньше (на несколькопорядков) рассчитанного теоретически для углеродных нанотрубок, что особенно очевид-но выражено в случае нанокомпозитов с эластомерной матрицей.В качестве вывода укажем, что модуль упругости компонент нанокомпозита являетсясильной функцией их фазового состояния, а определение реальных характеристик этихкомпонент позволяет корректное применение простого правила смесей.       ЛИТЕРАТУРА1. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes // Macromolecules,2006, v. 39(16), p. 5194. DOI: https://doi.org/10.1021/ma060733p2. Schaefer D. W., Justice R. S. How nano are nanocomposites? // Macromolecules, 2007, v. 40(24), p. 8501.DOI: https://doi.org10.1021/ma070326w3. Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement ofpolymers with carbon nanotubes. The role of an ordered polymer intwrfacial region. Experimental andmodeling // Polymer, 2006, v. 47(23), pp. 8556–8561. DOI: https://doi.org/10/1016/j.polymer.2006.10.0144. Kozlov G. V., Yanovskii Yu. G., Zaikov G. E. Particulate-Filled Polymer Nanocomposites. Structure,Properties, Perspectives. New York, Nova Science Publishers, Inc., 2014. DOI: https://doi.org/10.1002/9783527644346.ch35. Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications.New York, Nova Science Publishers, Inc., 2008.6. Jeong W., Kessler M.R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadienecomposites. Chem. Mater., 2008. v. 20(22), р. 7060. DOI: https://doi.org/10.1021/cm80209477. Koerner H., Liu W., Alexander M., Mirau P., Dowty H., Vaia R. A. Deformation – morphology correlationsin electrically conductive carbon nanotube – thermoplastic polyurethane nanocomposites // Polymer, 2005, v. 46(12), р. 4405. DOI: https://doi.org/10.1016/j.polymer.2005.02.0258. Ahmed S., Jones F. R. A review of particulate reinforcement theories of polymer composites // J.Mater. Sci., 1990, v. 25(12), pp. 4933–4942. DOI: https://doi.org/10.1007/bf005801109. Aygubova A. Ch., Kozlov G. V., Magomedov G. M., Zaikov G. E. The elastic modulus of carbon nanotubeaggregates in polymer nanocomposites. J. Characterization and Development of Novel Mater., 2016, v. 8(3), p. 227.10. Khan U., May P., O’Neill A., Bell A.P., Boussac E., Martin A., Semple J., Coleman J. N. Polymer reinforcementusing liquid-exfoliated boron nitride nanosheets // Nanoscale, 2013, v. 5(3), pp. 581-587. DOI: https://doi.org/10.1039/c2nr33049k


2015 ◽  
Vol 7 (5) ◽  
pp. 2077-2086 ◽  
Author(s):  
Asif Ali Khan ◽  
Shakeeba Shaheen

An electrically conductive poly-o-toluidine (POT) composite doped with p-toluene sulfonic acid (pTSA) was prepared using multiwalled carbon nanotubes (MWCNTs) and Sn(iv) tungstate (ST) by in situ oxidative polymerization.


2010 ◽  
Vol 1258 ◽  
Author(s):  
Marcus A Worsley ◽  
Joshua D. Kuntz ◽  
Sergei Kucheyev ◽  
Alex V Hamza ◽  
Joe H Satcher ◽  
...  

AbstractMany challenges remain in the effort to realize the exceptional properties of carbon nanotubes (CNT) in composite materials. Here, we report on electrically conductive composites fabricated via infiltration of CNT-based aerogels. The ultra low-density, high conductivity, and extraordinary robustness of the CNT aerogels make them ideal scaffolds around which to create conductive composites. Infiltrating the aerogels with various insulating materials (e.g. epoxy and silica) resulted in composites with electrical conductivities over 1 Scm-1 with as little as 1 vol% nanotube content. The electrical conductivity observed in the composites was remarkably close to that of the CNT scaffold in all cases.


2007 ◽  
Vol 1018 ◽  
Author(s):  
Zhongrui Li ◽  
Enkeleda Dervishi ◽  
Viney Saini ◽  
Alexandru R. Biris ◽  
Dan Lupu ◽  
...  

AbstractHighly electrically conductive and optically transparent thin films were fabricated on conventional glass substrates using different purified carbon nanotubes, single-wall (SWNT), double-wall (DWNT), and multi-wall (MWNT) carbon nanotubes. The starting carbon nanotube materials were first made into homogenous solution with either sodium cholate or dimethylformamide. Two different fabrication approaches, airbrushing and membrane filtration methods, were used and compared. The chemical modification of thionyl chloride was employed to further improve the optical and electric performance of the SWNT films. Additionally, the temperature dependence of the resistance measured on carbon nanotube networks has been investigated.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2464 ◽  
Author(s):  
Bogdan Florian Monea ◽  
Eusebiu Ilarian Ionete ◽  
Stefan Ionut Spiridon ◽  
Daniela Ion-Ebrasu ◽  
Emil Petre

Accurate measurement of temperatures with low power consumption with the highest sensitivity and smallest possible elements is still a challenge. The thermal, electrical, and mechanical properties of carbon nanotubes (CNTs) have suggested that their use as a very sensitive sensing element will allow the creation of different sensors, far superior to other devices of similar size. In this paper, we present a short review of different constructive designs of CNTs based resistive sensors used for temperature measurement, available in literature, assembled using different processes, such as self-assembly, drop-casting from a solution, thin films obtained by gluing, printing, spraying, or filtration over a special membrane. As particular cases, temperature sensors obtained from CNT-polymer nanocomposite structures, CNTs filled with uniformly dispersed Fe3O4 nanoparticles or with gallium, and carbon nanotube wires (CNWs) hybrids are presented. Using these preparation procedures, mixtures of CNTs with different dimensions and chirality, as well as with a variable level of impurities and structural defects, can be produced. The sensors’ performance charts are presented, highlighting a number of aspects regarding the applicability of CNT structures for temperature measurement ranging from cryogenic temperatures to high temperatures, the limitations they have, their characteristics and advantages, as well as the special situations that may arise given the particular structure of these new types of materials, together with basic relationships and parameters for CNTs characterization. Further research will be required to develop the techniques of manipulating and depositing individual CNTs on supports and electrodes for the development of temperature sensors.


2018 ◽  
Vol 6 (30) ◽  
pp. 8160-8170 ◽  
Author(s):  
Yalong Wang ◽  
Yanyan Jia ◽  
Yujie Zhou ◽  
Yan Wang ◽  
Guoqiang Zheng ◽  
...  

A polydopamine (PDA)/carbon nanotube (CNT)/elastic band (EB) flexible strain sensor has desirable integration of an ultra-high strain range (920% strain), large sensitivity and superior durability (10 000 cycles).


Sign in / Sign up

Export Citation Format

Share Document