scholarly journals Fabrication and Evaluation of Transmissive Multilayer Optics for 8keVX Rays

1987 ◽  
Vol 103 ◽  
Author(s):  
R. M. Bionta ◽  
A. F. Jankowski ◽  
D. M. Makowiecki

ABSTRACTWe have made and tested several sliced multilayer structures which can function as transmissive x-ray optical elements (diffraction gratings, zone plates, and phase gratings) at 8 keV. Our automated multilayer sputtering system is optimized to sputter layers of arbitrary thickness for very large total deposits at high deposition rates. Diffraction patterns produced by the multilayer devices closely match theoretical predictions. Such transmissive optics have the potential for wide application in high resolution microscope and spectrometer systems.

1988 ◽  
Vol 143 ◽  
Author(s):  
Troy W. Barbee ◽  
Piero Pianetta

Simple multilayer structures and multilayer diffraction gratings are now of sufficient quality to be used as optical elements in synchrotron radiation source instrumentation. In this paper results obtained with a multilayer two element monochromator will be presented. Three specific types of results will be discussed. First, transmission measurements of the absorption cross-sections of elemental thin films in the energy range 50 to 2000 eV will be presented and used to demonstrate the performance of the monochromator. Second, application of this monochromator in x-ray lithography research will be described and the advantages of the broad bandpass of multilayer optics demonstrated. Third, use of this monochromator in scattering studies of long period structures will be discussed. The potential for the use of multilayer diffraction gratings in high resolution monochromator applications will also be considered.


1988 ◽  
Vol 41 (2) ◽  
pp. 101 ◽  
Author(s):  
William Parrish

The advantages of synchrotron radiation for X-ray polycrystalline diffraction are illustrated by a number of examples. The plane wave parallel-beam X-ray optics uses a Si(lll) channel monochromator for easy wavelength selection and a set of long parallel slits to define the diffracted beam. The constant simple instrument function and the high resolution symmetrical profiles (FWHM 0.05") greatly simplify the data analysis and add a new dimension to profile broadening studies. The geometry permits uncoupling the 6-26 sample-detector relationship without changing the profile shape and makes possible new applications such as grazing angle incidence depth analysis of thin films. The same instrumentation is used for high resolution energy dispersive diffraction (BOD) by step-scanning the monochromator. The resolution is two orders of magnitude better than conventional BOD and can be used at high count rates. The easy wavelength selection yields diffraction patterns with the highest PI B and permits anomalous scattering studies.


1990 ◽  
Vol 187 ◽  
Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

AbstractMultilayer structures of W/C, WC/C, and Ru/C, of various periods were prepared and studied by high-resolution transmission electron microscopy. Comparison of the phases in the layered structures is made for as-prepared and annealed samples. Both as-prepared and annealed WC/C multilayers are predominantly amorphous, while the phases in the W/C depend on the periods. The 2 nm period W/C multilayer remains amorphous after annealing, and the longer periods recrystallize to form W2C. The layered microstructures of W/C and WC/C are stable on annealing at all periods, while the amorphous Ru-rich layers in the 2 nm period Ru/C multilayer agglomerate upon annealing to form elemental hexagonal Ru crystallites. Larger period Ru/C multilayers show stable layered structures, and indicate hexagonal Ru in the Ru-rich layers. X-ray measurements show that the multilayer periods expand on annealing for all metal-carbon multilayers studied.


2001 ◽  
Vol 16 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Takeo Oku ◽  
Jan-Olov Bovin ◽  
Iwami Higashi ◽  
Takaho Tanaka ◽  
Yoshio Ishizawa

Atomic positions for Y atoms were determined by using high-resolution electron microscopy and electron diffraction. A slow-scan charge-coupled device camera which had high linearity and electron sensitivity was used to record high-resolution images and electron diffraction patterns digitally. Crystallographic image processing was applied for image analysis, which provided more accurate, averaged Y atom positions. In addition, atomic disordering positions in YB56 were detected from the differential images between observed and simulated images based on x-ray data, which were B24 clusters around the Y-holes. The present work indicates that the structure analysis combined with digital high-resolution electron microscopy, electron diffraction, and differential images is useful for the evaluation of atomic positions and disordering in the boron-based crystals.


Author(s):  
Toshihiro Kogure ◽  
Jun Kameda

Stacking disorder is a common phenomenon in phyllosilicates but its nature is difficult to be deduced using conventional diffraction techniques. In contrast, recent investigations using high-resolution transmission electron microscopy (HRTEM) have elucidated the structure of stacking disorder in various phyllosilicates, by directly observing individual layers and stacking sequences. Furthermore, simulations of X-ray or electron diffraction patterns using the information from the HRTEM results can complement the limited analysis area in TEM and quantify the density of the stacking disorder.Although the bonding between adjacent layers is similar, there is a significant difference in the stacking disorder between two counterparts of dioctahedral and trioctahedral 2 : 1 phyllosilicates: pyrophyllite vs. talc and sudoite vs. trioctahedral chlorite. In pyrophyllite and sudoite, stacking disorder is caused mainly by two alternatives of the lateral displacement directions between the two tetrahedral sheets across the interlayer region. On the other hand, rotation of 2 : 1 layer is also an origin of the stacking disorder in talc and trioctahedral chlorite. This difference is explained by the corrugation of basal oxygen planes on the dioctahedral 2 : 1 layer formed by the tetrahedral tilting to enlarge


2013 ◽  
Vol 20 (6) ◽  
pp. 899-904 ◽  
Author(s):  
Atsushi Tokuhisa ◽  
Junya Arai ◽  
Yasumasa Joti ◽  
Yoshiyuki Ohno ◽  
Toyohisa Kameyama ◽  
...  

2000 ◽  
Vol 648 ◽  
Author(s):  
Kyu-Young Kim ◽  
Masao Kamiko ◽  
Sang-Mun Oh ◽  
Guang-Hong Lu ◽  
Ryoichi Yamamoto

AbstractWe investigated the differences in the interface structures and magnetotransport properties between surfactant-mediated multilayers and normal ones. From the observations of RHEED and High-Resolution X-ray diffraction patterns, we confirmed that the surfaces of Fe/Cr(100) multilayers with Pb are flatter and the interfaces are sharper than one without Pb, which means that Pb operates as an effective surfactant. The magnetoresistance(MR) ratio of the multilayers prepared with Pb was larger than that of the multilayers prepared without Pb. The change of resistance with magnetic field was larger for the multilayers with a surfactant.


1987 ◽  
Vol 61 (4) ◽  
pp. 1422-1428 ◽  
Author(s):  
Amanda K. Petford‐Long ◽  
Mary Beth Stearns ◽  
C.‐H. Chang ◽  
S. R. Nutt ◽  
D. G. Stearns ◽  
...  

1999 ◽  
Vol 563 ◽  
Author(s):  
G. S. Cargill III ◽  
A. C. Ho ◽  
K. J. Hwang ◽  
H. K. Kao ◽  
P.-C. Wang ◽  
...  

AbstractThe interplay between stress and electromigration has been recognized since I. A. Blech et al. used x-ray topography in 1976 to demonstrate that stress gradients developed during electromigration. Availability of high brightness synchrotron x-ray sources, high stability energy dispersive detectors, high resolution area detectors, and pinholes, capillaries and other optical elements for forming x-ray microbeams, has made possible more quantitative, real time measurements of strains and composition changes which develop in polycrystalline metal conductor lines during electromigration. This paper describes advances made in this area, implications of results which have been obtained, and prospects for further progress.


Sign in / Sign up

Export Citation Format

Share Document