Analysis of Indentation Creep

2007 ◽  
Vol 1049 ◽  
Author(s):  
Donald Stone ◽  
A. A. Elmustafa

AbstractIncreasingly, indentation creep experiments are being used to characterize rate-sensitive deformation in specimens that, due to small size or high hardness, are difficult to characterize by more conventional methods like uniaxial loading. In the present work we use finite element analysis to simulate indentation creep in a collection of materials whose properties vary across a wide range of hardness, strain rate sensitivities, and work hardening exponents. Our studies reveal that the commonly held assumption that the strain rate sensitivity of the hardness equals that of the flow stress is violated except for materials with low hardness/modulus ratios like soft metals. Another commonly held assumption is that the area of the indent increases with the square of depth during constant load creep. This latter assumption is used in an analysis where the experimenter estimates the increase in indent area (decrease in hardness) during creep based on the change in depth. This assumption is also strongly violated. Fortunately, both violations are easily explained by noting that the “constants” of proportionality relating 1) hardness to flow stress and 2) area to (depth)2 are actually functions of the hardness/modulus ratio. Based upon knowledge of these functions it is possible to accurately calculate 1) the strain rate sensitivity of the flow stress from a measurement of the strain rate sensitivity of the hardness and 2) the power law exponent relating area to depth during constant load creep.

2010 ◽  
Vol 25 (4) ◽  
pp. 611-621 ◽  
Author(s):  
Don S. Stone ◽  
Joseph E. Jakes ◽  
Jonathan Puthoff ◽  
Abdelmageed A. Elmustafa

Finite element analysis is used to simulate cone indentation creep in materials across a wide range of hardness, strain rate sensitivity, and work-hardening exponent. Modeling reveals that the commonly held assumption of the hardness strain rate sensitivity (mH) equaling the flow stress strain rate sensitivity (mσ) is violated except in low hardness/modulus materials. Another commonly held assumption is that for self-similar indenters the indent area increases in proportion to the (depth)2 during creep. This assumption is also violated. Both violations are readily explained by noting that the proportionality “constants” relating (i) hardness to flow stress and (ii) area to (depth)2 are, in reality, functions of hardness/modulus ratio, which changes during creep. Experiments on silicon, fused silica, bulk metallic glass, and poly methyl methacrylate verify the breakdown of the area-(depth)2 relation, consistent with the theory. A method is provided for estimating area from depth during creep.


2007 ◽  
Vol 22 (4) ◽  
pp. 926-936 ◽  
Author(s):  
A.A. Elmustafa ◽  
S. Kose ◽  
D.S. Stone

Finite element analysis is used to simulate indentation creep experiments with a cone-shaped indenter. The purpose of the work is to help identify the relationship between the strain-rate sensitivity of the hardness, νH, and that of the flow stress, νσ in materials for which elastic deformations are significant. In general, νH differs from νσ, but the ratio νH/νσ is found to be a unique function of H/E* where H is the hardness and E* is the modulus relevant to Hertzian contact. νH/νσ approaches 1 for small H/E*, 0 for large H/E*, and is insensitive to work hardening. The trend in νH/νσ as a function of H/E* can be explained based on a generalized analysis of Tabor’s relation in which hardness is proportional to the flow stress H = k × σeff and in which the proportionality factor k is a function of σeff/E*.


2007 ◽  
Vol 22 (10) ◽  
pp. 2912-2916 ◽  
Author(s):  
A.A. Elmustafa ◽  
D.S. Stone

This paper examines the strain rate sensitivity of the hardness νH in relation to the strain rate sensitivity of the flow stress (νσ) in hard solids when there is friction between the indenter and specimen. Finite element analysis is used to simulate indentation creep of von Mises solids with a range of hardness/modulus ratios (H/E*) and coefficients of friction, μ, for indenter–specimen contact. We find that, although the level of H is affected by friction, the ratio νH/νσ as a function of H/E* remains nearly unchanged. Measurements indicate that νH = 0.015 ± 0.02 for fused silica, from which, based on the present analysis, νσ ≈ 0.022 and from which an activation volume of 0.13 nm3 can be estimated for plastic deformation.


1994 ◽  
Vol 364 ◽  
Author(s):  
B. Viguier ◽  
J. Bonneville ◽  
K. J. Hemker ◽  
J. L. Martin

AbstractMechanical properties of a polycrystalline single phased γ Ti47Al51Mn2 alloy were studied by compression tests in a wide range of temperature (100 K - 1300 K). We report, in this paper, the temperature dependence of both the flow stress and its strain rate sensitivity. These dependencies show the existence of three temperature domains corresponding to different dislocation motion mechanisms. The temperature dependence of the flow stress strain rate sensitivity is compared with values measured in single crystals1.


2015 ◽  
Vol 719-720 ◽  
pp. 87-90
Author(s):  
Muneer Baig ◽  
Hany Rizk Ammar ◽  
Asiful Hossain Seikh ◽  
Mohammad Asif Alam ◽  
Jabair Ali Mohammed

In this investigation, bulk ultra-fine grained and nanocrystalline Al-2 wt.% Fe alloy was produced by mechanical alloying (MA). The powder was mechanically milled in an attritor for 3 hours and yielded an average crystal size of ~63 nm. The consolidation and sintering was performed using a high frequency induction sintering (HFIS) machine at a constant pressure of 50 MPa. The prepared bulk samples were subjected to uniaxial compressive loading over wide range of strain rates for large deformation. To evaluate the effect of sintering conditions and testing temperature on the strain rate sensitivity, strain rate jump experiments were performed at high temperature. The strain rate sensitivity of the processed alloy increased with an increase in temperature. The density of the bulk samples were found to be between 95 to 97%. The average Vickers micro hardness was found to be 132 Hv0.1.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Marcin Chybiński ◽  
Łukasz Polus ◽  
Maria Ratajczak ◽  
Piotr Sielicki

The present study focused on the behaviour of the AW-6060 aluminium alloy in peak temper condition T6 under a wide range of loads: tensile loading, projectile and explosion. The alloy is used as a structural component of civil engineering structures exposed to static or dynamic loads. Therefore, it was crucial to determine the material’s behaviour at low and intermediate rates of deformation. Despite the fact that the evaluation of the strain rate sensitivity of the AW-6060 aluminium alloy has already been discussed in literature, the authors of this paper wished to further investigate this topic. They conducted tensile tests and confirmed the thesis that the AW-6060 T6 aluminium alloy has low strain rate sensitivity at room temperature. In addition, the fracture surfaces subjected to different loading (tensile loading, projectile and explosion) were investigated and compared using a scanning electron microscope, because the authors of this paper were trying to develop a new methodology for predicting how samples had been loaded before failure occurred based on scanning electron microscopy (SEM) micrographs. Projectile and explosion tests were performed mainly for the SEM observation of the fracture surfaces. These tests were unconventional and they represent the originality of this research. It was found that the type of loading had an impact on the fracture surface.


2012 ◽  
Vol 47 (20) ◽  
pp. 7189-7200 ◽  
Author(s):  
Daniel Peykov ◽  
Etienne Martin ◽  
Richard R. Chromik ◽  
Raynald Gauvin ◽  
Michel Trudeau

Sign in / Sign up

Export Citation Format

Share Document