Low Resistance Ohmic Contacts Formation and Mechanism of Current Transport Through p-GaN and p-AlGaN

2008 ◽  
Vol 1108 ◽  
Author(s):  
Indra Chary ◽  
Boris Borisov ◽  
Vladimir Kuryatkov ◽  
Yuriy Kudryavtsev ◽  
R Asomoza ◽  
...  

AbstractWe report the influence of surface treatment, annealing temperature and metal bilayer thickness on the specific contact resistance (ρc) of Au/Ni ohmic contacts to p-GaN and p-AlGaN. Ohmic contact on p-GaN with a hole concentration of 6.5 x 1017 cm-3, shows the lowest ρc of ˜9.2 x 10-6 Ω cm2, when GaN was treated in HCl:H2O (3:1) solution before metal deposition and annealed at 500°C for 10 minutes in 90% N2 and 0% O2 atmosphere. Similar procedure applied on p-AlxGa1-xN (x = 5-7%), with a hole concentration of 2.3 x 1017 cm-3, yields a ρc of 1.8 x 10-4 Ω cm2. An increase is observed in ρc when Mg doping exceeds 4 x 1019 cm-3 in both p-GaN and p-AlGaN. This is attributed to Mg self compensation. This increase is more pronounced in AlGaN which we attribute to the presence of residual native aluminum oxides.

2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


2007 ◽  
Vol 556-557 ◽  
pp. 1027-1030 ◽  
Author(s):  
Ferdinando Iucolano ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
A. Alberti ◽  
Vito Raineri

In this work, the structural and electrical properties of Ti/Al/Ni/Au contacts on n-type Gallium Nitride were studied. An ohmic behaviour was observed after annealing above 700°C. The structural analysis showed the formation of an interfacial TiN layer and different phases in the reacted layer (AlNi, AlAu4, Al2Au) upon annealing. The temperature dependence of the specific contact resistance demonstrated that the current transport occurs through thermoionic field emission in the contacts annealed at 600°C, and field emission after annealing at higher temperatures. By fitting the data with theoretical models, a reduction of the Schottky barrier from 1.21eV after annealing at 600°C to 0.81eV at 800°C was demonstrated, together with a strong increase of the carrier concentration at the interface. The reduction of the contact resistance upon annealing was discussed by correlating the structural and electrical characteristics of the contacts.


2020 ◽  
Vol 1004 ◽  
pp. 725-730
Author(s):  
Fabrizio Roccaforte ◽  
Monia Spera ◽  
Salvatore Di Franco ◽  
Raffaella Lo Nigro ◽  
Patrick Fiorenza ◽  
...  

Gallium nitride (GaN) and its AlGaN/GaN heterostructures grown on large area Si substrates are promising systems to fabricate power devices inside the existing Si CMOS lines. For this purpose, however, Au-free metallizations are required to avoid cross contaminations. In this paper, the mechanisms of current transport in Au-free metallization on AlGaN/GaN heterostructures are studied, with a focus on non-recessed Ti/Al/Ti Ohmic contacts. In particular, an Ohmic behavior of Ti/Al/Ti stacks was observed after an annealing at moderate temperature (600°C). The values of the specific contact resistance ρc decreased from 1.6×104 Ω.cm2 to 7×105 Ω.cm2 with increasing the annealing time from 60 to 180s. The temperature dependence of ρc indicated that the current flow is ruled by a thermionic field emission (TFE) mechanism, with barrier height values of 0.58 eV and 0.52 eV, respectively. Finally, preliminary results on the forward and reverse bias characterization of Au-free tungsten carbide (WC) Schottky contacts are presented. This contact exhibited a barrier height value of 0.82 eV.


1995 ◽  
Vol 395 ◽  
Author(s):  
J. Brown ◽  
J Ramer ◽  
K. ZHeng ◽  
L.F. Lester ◽  
S.D. Hersee ◽  
...  

ABSTRACTWe report on ohmic contacts to Si-implanted and un-implanted n-type GaN on sapphire. A ring shaped contact design avoids the need to isolate the contact structures by additional implantation or etching. Metal layers of Al and Ti/Al were investigated. On un-implanted GaN, post metalization annealing was performed in an RTA for 30 seconds in N2 at temperatures of 700, 800, and 900°C, A minimum specific contact resistance (rc) of 1.4×10−5 Ω-cm2 was measured for Ti/Al at an annealing temperature of 800°C. Although these values are reasonably low, variations of 95% in specific contact resistance were measured within a 500 µm distance on the wafer. These results are most likely caused by the presence of compensating hydrogen. Specific contact resistance variation was reduced from 95% to 10% by annealing at 900°C prior to metalization. On Si-implanted GaN, un-annealed ohmic contacts were formed with Ti/Al metalization. The implant activation anneal of 1120°C generates nitrogen vacancies that leave the surface heavily n-type, which makes un-annealed ohmic contacts with low contact resistivity possible.


1993 ◽  
Vol 300 ◽  
Author(s):  
A. Piotrowska ◽  
E. Kaminska ◽  
M. Guziewicz ◽  
S. Kwiatkowski ◽  
A. Turos

ABSTRACTThe formation of ohmic contacts to p-GaAs based on Au-Zn system comprising a TiN diffusion barrier has been investigated using 2 MeV He+ RBS and the specific contact resistance measurements. It has been proved that TiN films deposited by reactive RF bias magnetron sputtering serves two purposes. First it suppresses the arsenic evaporation and thus confines the reaction between AuZn and GaAs. Second, it prevents intermixing between p-GaAs/Au(Zn) ohmic contact and an overlayer of Au.


2009 ◽  
Vol 615-617 ◽  
pp. 569-572
Author(s):  
Jens Eriksson ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
Raffaella Lo Nigro ◽  
Giuseppe Moschetti ◽  
...  

This paper reports on the macro- and nanoscale electro-structural evolution, as a function of annealing temperature, of nickel-silicide Ohmic contacts to 3C-SiC, grown on 6H-SiC substrates by a Vapor-Liquid-Solid (VLS) technique. The structural and electrical characterization of the contacts, carried out by combining different techniques, showed a correlation between the annealing temperature and the electrical characteristics in both the macro- and the nanoscale measurements. Increasing the annealing temperature between 600 and 950 °C caused a gradual increase of the uniformity of the nanoscale current-distribution, with an accompanying reduction of the specific contact resistance from 5 x 10-5 to 8.4 x 10-6 Ωcm2. After high temperature annealing (950 °C) the structural composition of the contacts stabilized, as only the Ni2Si phase was detected. A comparison with previous literature findings suggests a superior crystalline quality of the single domain VLS 3C-SiC layers.


1997 ◽  
Vol 482 ◽  
Author(s):  
Ja-Soon Jang ◽  
Hyo-Gun Kim ◽  
Kyung-Hyun Park ◽  
Chang-Sub Um ◽  
Il-Ki Han ◽  
...  

AbstractWe report a new Ni/Pt/Au (20/30/80 nm) metallization scheme to achieve a low ohmic contacts to p-type GaN with a carrier concentration of 9.4 × 1016 cm-3. A Mg-doped GaN layer (0.5 μm) was grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). All metal thin films were deposited on the p-GaN layer in an electron-beam evaporation system. Samples were annealed by a rapid thermal annealing (RTA) process at a range of temperatures from 300 °C to 850 °C under a flowing Ar atmosphere. A circulartransmission line model (c-TLM) was employed to calculate the specific contact resistance, and current-voltage (I-V) data were measured with HP4155A. The Ni/Pt/Au contacts without the annealing process showed nearly rectifying characteristics. The ohmic contacts were formed on the samples annealed at 500 °C for 30 sec and the I-V data showed a linear behavior. The specific contact resistance was 2.1 × 10-2 Ωcm2. However with increasing the annealing temperature above 600 °C, ohmic contacts were again degraded. Auger electron spectroscopy (AES) depth profiles were used to investigate the interfacial reactions between the trilayer and GaN. AES results suggested that Pt plays a significant role in forming ohmic contact as an acceptor at the interface. Atomic force microscope (AFM) also showed that the samples with good ohmic contact have very smooth surface.


1994 ◽  
Vol 337 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
H. Barry Harrison

ABSTRACTThis paper briefly reviews the standard Transmission Line Model (TLM) commonly used to measure the specific contact resistance ρc and the sheet resistance Rsk beneath a planar ohmic contact. In the case of an alloyed ohmic contact, a more realistic three layer (Tri-Layer Transmission Line Model (TLTLM)) can be used for the analysis. This model is based on three layers (metal layer, alloyed semiconductor layer and the unalloyed semiconductor layer) and the two interfaces between them. By using appropriate TLTLM parameters, it is possible to calculate the sheet resistance Rsk that has been experimentally derived from the standard TLM. The new TLTLM model predicts that values of Rsk greater and less than Rsh (the unmodified epitaxial layer sheet resistance) are possible in agreement with experimentally reported observations.


2017 ◽  
Vol 30 (3) ◽  
pp. 313-326 ◽  
Author(s):  
Anthony Holland ◽  
Yue Pan ◽  
Mohammad Alnassar ◽  
Stanley Luong

Though the transport of charge carriers across a metal-semiconductor ohmic interface is a complex process in the realm of electron wave mechanics, such an interface is practically characterised by its specific contact resistance. Error correction has been a major concern in regard to specific contact resistance test structures and investigations by finite element modeling demonstrate that test structures utilising circular contacts can be more reliable than those designed to have square shaped contacts as test contacts become necessarily smaller. Finite element modeling software NASTRAN can be used effectively for designing and modeling ohmic contact test structures and can be used to show that circular contacts are efficient in minimising error in determining specific contact resistance from such test structures. Full semiconductor modeling software is expensive and for ohmic contact investigations is not required when the approach used is to investigate test structures considering the ohmic interface as effectively resistive.


1995 ◽  
Vol 382 ◽  
Author(s):  
M.W. Cole ◽  
W.Y. Han ◽  
K.A. Jones

ABSTRACTInterfacial microstructure and phase composition of PtTiGePd ohmic contacts to heavily C doped AlGaAs were investigated as a function of annealing temperature. Results of the material analyses were used to explain the specific contact resistances measured for each thermal treatment. Evidence of interdiffusion and compound formation between AIGaAs and Pd was visible in a Ga rich Pd-Ga-As reaction zone prior to heat treatment. This phase is critical for the formation of Ga vacancies, which upon heating are occupied by in-diffusing Ge. As the annealing temperature was elevated, from 530 - 600°C, As began to out-diffuse. This As out-diffusion, which is critical to the formation of good p-type ohmic contacts, contributed to the creation and development of the two phase TiAs/Pd12Ga2Ge5 interfacial region overlying the AlGaAs substrate. In response to the enhanced As out-diffusion at 600°C, the interfacial region became laterally continuous, compositionally uniform, and the specific contact resistance achieved its minimum value. Athigher annealing temperatures, ∼650°C, the electrical measurements degraded in response to intensive chemical diffusion and development of a broad, non-uniform multi-phased interfacial region.


Sign in / Sign up

Export Citation Format

Share Document