Characterization of North American Lignite Fly Ashes II. XRD Mineralogy

1987 ◽  
Vol 113 ◽  
Author(s):  
G. J. McCarthy ◽  
D. M. Johansen ◽  
A. Thedchanamoorthy ◽  
S. J. Steinwand ◽  
K. D. Swanson

ABSTRACTX-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al2O3 ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C3A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7–14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash.

2014 ◽  
Vol 675-677 ◽  
pp. 724-727 ◽  
Author(s):  
Wei Wei Tu ◽  
Yong Feng Zhang ◽  
Jie Bai ◽  
Wei Liu

Synthesis of pure-form zeolite 13X was investigated using the alkali fusion-hydrothermal method to dissolve Si and Al sources from fly ash, and with the addition of Si source, to prepare initial gel. Experimental results demonstrated, the regular morphology and homogeneous composition are in good agreement with standard zeolite 13X by characterization of XRD, SEM and IR. The properties of adsorption and CEC values were evaluated by BET and UV-spectrophotometry, respectively. All properties are much better than commercial zeolite 13X. Our results further revealed that like coal fly ash after alkali fusion pretreatment can be used for zeolite synthesis. Thus, It demonstrates a promising feedstock for the green synthesis of zeolites directly without experiencing intermediate chemicals.


2014 ◽  
Vol 90 ◽  
pp. 53-57 ◽  
Author(s):  
M. Tiwari ◽  
S.K. Sahu ◽  
R.C. Bhangare ◽  
P.Y. Ajmal ◽  
G.G. Pandit

1987 ◽  
Vol 113 ◽  
Author(s):  
Gregory I. McCarthy

ABSTRACTA brief summary of the use of x-ray powder diffraction for studying the mineralogy of fly ash is presented. Mineralogies of low-, intermediate- and high-calcium fly ashes are discussed and illustrated by results from XRD characterization of U.S. National Bureau of Standards fly ash Standard Reference Materials.


1989 ◽  
Vol 33 ◽  
pp. 673-678
Author(s):  
Sz. Török ◽  
Sz. Sándor ◽  
H. Rausch

The assessment of the potential environmental and toxicological effects of particulate material emitted to the atmosphere requires detailed physical and chemical characterization of the particles. One of the most widely studied types of pollutant particles is coal fly ash as a byproduct of coal combustion. These particles are inhomogeneous, highly variable, span a broad range of sizes and have diverse morphologies.It has been shown that numerous toxic trace elements tend to increase in bulk concentrations with decreasing particle size (1).


Author(s):  
Daniel A. Netzel ◽  
Francis P. Miknis

Fly ash is a by-product from the combustion of coal. The 1985 annual US production was estimated to be about 1 x 108 metric tons. The utilization of fly ash during the 1980s remained stable at about 25% per year. Because of its pozzolanic properties, nearly 50% of the utilized fly ash is consumed in the production of cement and concrete. The vast quantity of fly ash that is not being used and its availability throughout the country and worldwide have motivated research for new uses in commerce and industry. Little is known of the organic adsorbent properties of fly ash. However, if they are found to be favorable, the potential commercial applications of the adsorptive characteristics of fly ash could include its use as an adsorbent sandwich for organics in combination with landfill or other dump-site liners, in traps for organics in waste waters, in filters for organics in process air streams, and as a stabilizer for organic wastes in drums. Variables that may affect the adsorbability of the fly ash towards organics in water include temperature; solution pH; and interactions between solute molecules and fly ash, and between solvent molecules and fly ash. Thus, there is an essential need to characterize each coal fly ash type to enable potential correlation between coal fly ash structural properties and the effectiveness of the adsorption characteristics of coal fly ash for immobilizing organic hazardous waste compounds. The composition and properties of pulverized fly ash depend on the type of coal burned and the nature of the combustion process. Thus, fly ashes from different origins may have significantly different sorption properties towards organic compounds of environmental interest. Eastern and western coal fly ashes differ significantly in their physical and chemical properties. The major minerals found in coal fly ash are α-quartz (SiO2), mullite (3A12O3 ·2SiO2), hematite (Fe2O3), magnetite (Fe3O4), lime (CaO), and gypsum (CaSO4·2H2O). Little is known of the coordination state and distribution of siliceous and aluminous material in coal fly ashes. Most siliceous and aluminous materials in fly ash are amorphous and thus are not detected or quantified by X-ray techniques.


1990 ◽  
Vol 50 (3-4) ◽  
pp. 343-353 ◽  
Author(s):  
M. P. Menon ◽  
G. S. Ghuman ◽  
J. James ◽  
K. Chandra ◽  
D. C. Adriano

2020 ◽  
Vol 12 (10) ◽  
pp. 4193 ◽  
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Jessica Ponti ◽  
Andrea Valsesia ◽  
...  

This review paper reports a detailed characterization of some combustion or incineration residues and by-products produced in a medium-sized city in Northern Italy. The municipal solid waste incineration (MSWI) generates fly ash, which is a toxic waste. Coal fly ash (CFA) and flue gas desulfurization (FGD) derive from the thermoelectric coal plant located in the same city. Along with these ashes, silica fume and rice husk ash are also considered for the stabilization of fly ash based on their amorphous silica content with the aim to convert them into an inert material. The characterization of all the investigated ashes was performed using different techniques: X-ray diffraction, total reflection X-ray fluorescence, scanning electron microscopy, and transmission electron microscopy. The aim of this work is to describe the reuse possibilities that were proposed for these ashes, which were determined also on the basis of their structural properties. Several possible applications of the investigated ashes are proposed, and the most suitable reuse of stabilized fly ash samples seems to be the production of sustainable plastic composites. This paper shows that the reuse of the by-product materials can allow natural resources to be preserved following the principles of a circular economy.


Sign in / Sign up

Export Citation Format

Share Document