Aromatic Polyurea for High Temperature High Energy Density Capacitors

2008 ◽  
Vol 1134 ◽  
Author(s):  
Yong Wang ◽  
Xin Zhou ◽  
Minren Lin ◽  
Sheng-Guo David Lu ◽  
Jun-Hong Lin ◽  
...  

AbstractWe investigate aromatic polyureas which can be fabricated in the form of thin films through CVD. It was found that the polymer possesses a flat dielectric response (k∼ 4.2 and loss <1%)) to more than 200°C. The frequency-independent dielectric properties in the investigated frequency range(1kHz∼1MHz), low conductance, low dissipation factor (∼0.005), high breakdown strength (>800MV/m), high energy density (>12J/cm3) and high efficiency suggest this polymer can be a good candidate material for high temperature energy storage capacitors. Breakdown strength was analyzed with Weibull model over a broad temperature range (25°C ∼180°C). Experimental results indicate that aromatic polyurea is more like a nonpolar linear dielectric material because of its highly cross-linked structures. The experiment results further show that this polymer maintains its high performance even at high temperatures.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


2013 ◽  
Vol 1499 ◽  
Author(s):  
Shan Wu ◽  
Quinn Burlingame ◽  
Weiping Li ◽  
Minren Lin ◽  
Yue Zhou ◽  
...  

ABSTRACTDielectric capacitors for energy storage are of great importance in modern electronics and electric systems. It is a challenge to realize the high energy density while maintain the low dielectric loss. We investigated an ultra high breakdown electric field of 1.1 GV/m, which is approaching the intrinsic breakdown, in aromatic polythiourea, a new dielectric material that serves a high energy density of 23 J/cm3 as well as high charge-discharge efficiency above 90%. The molecular structure and film surface morphology were also studied, it was proved a polar amorphous phase and glass state material could significantly suppress the high field conduction to several orders smaller compared with regular polymer dielectric materials, which are usually semi-crystalline and in rubber phase.


RSC Advances ◽  
2017 ◽  
Vol 7 (55) ◽  
pp. 34488-34496 ◽  
Author(s):  
Chong Chen ◽  
Dengfeng Yu ◽  
Gongyuan Zhao ◽  
Lei Sun ◽  
Yinyong Sun ◽  
...  

Developing supercapacitors with high energy density without sacrificing the power density and cycle life has attracted enormous attention.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


Author(s):  
Congkai Sun ◽  
Xiong Zhang ◽  
Chen Li ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document