Improved Fabrication Technique for Microstructured Solid-State Neutron Detectors

2009 ◽  
Vol 1164 ◽  
Author(s):  
Steven L Bellinger ◽  
Walter J McNeil ◽  
Douglas Scott McGregor

AbstractMicrostructured semiconductor neutron detectors have superior efficiency performance over thin-film coated planar semiconductor detectors. The microstructured detectors have patterns deeply etched into the semiconductor substrates subsequently backfilled with neutron reactive materials. The detectors operate as pn junction diodes. Two variations of the diodes have been fabricated, which either have a rectifying pn junction selectively formed around the etched microstructures or have pn junctions conformally diffused inside the microstructures. The devices with the pn junctions formed in the perforations have lower leakage currents and better signal formation than the devices with selective pn junctions around the etched patterns. Further, pulse height spectra from conformally diffused detectors have the main features predicted by theoretical models, whereas pulse height spectra from the selectively diffused detectors generally do not show these features. The improved performance of the conformal devices is attributed to stronger and more uniform electric fields in the detector active region. Also, system noise, which is directly related to leakage current, has been dramatically reduced as a result of the conformal diffusion fabrication technique. A sinusoidal patterned device with 100 μm deep perforations backfilled with 6LiF was determined to have 11.9 ± 0.078% intrinsic detection efficiency for 0.0253 eV neutrons, as calibrated with thin-film planar semiconductor devices and a 3He proportional counter.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7930
Author(s):  
Zhongming Zhang ◽  
Michael D. Aspinall

Third-generation semiconductor materials have a wide band gap, high thermal conductivity, high chemical stability and strong radiation resistance. These materials have broad application prospects in optoelectronics, high-temperature and high-power equipment and radiation detectors. In this work, thin-film solid state neutron detectors made of four third-generation semiconductor materials are studied. Geant4 10.7 was used to analyze and optimize detectors. The optimal thicknesses required to achieve the highest detection efficiency for the four materials are studied. The optimized materials include diamond, silicon carbide (SiC), gallium oxide (Ga2O3) and gallium nitride (GaN), and the converter layer materials are boron carbide (B4C) and lithium fluoride (LiF) with a natural enrichment of boron and lithium. With optimal thickness, the primary knock-on atom (PKA) energy spectrum and displacements per atom (DPA) are studied to provide an indication of the radiation hardness of the four materials. The gamma rejection capabilities and electron collection efficiency (ECE) of these materials have also been studied. This work will contribute to manufacturing radiation-resistant, high-temperature-resistant and fast response neutron detectors. It will facilitate reactor monitoring, high-energy physics experiments and nuclear fusion research.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Andrew N. Mabe ◽  
John D. Auxier ◽  
Matthew J. Urffer ◽  
Stephen A. Young ◽  
Dayakar Penumadu ◽  
...  

Thin film polystyrene composite scintillators containing LiF6 and organic fluors have been fabricated and tested as thermal neutron detectors. Varying fluorescence emission intensities for different compositions are interpreted in terms of the Beer-Lambert law and indicate that the sensitivity of fluorescent sensors can be improved by incorporating transparent particles with refractive index different than that of the polymer matrix. Compositions and thicknesses were varied to optimize the fluorescence and thermal neutron response and to reduce gamma-ray sensitivity. Neutron detection efficiency and neutron/gamma-ray discrimination are reported herein as functions of composition and thickness. Gamma-ray sensitivity is affected largely by changing thickness and unaffected by the amount of LiF6 in the film. The best neutron/gamma-ray discrimination characteristics are obtained for film thicknesses in the range 25–150 μm.


2020 ◽  
Vol 50 ◽  
pp. 2060017
Author(s):  
Katarína Sedlačková ◽  
Bohumír Zaťko ◽  
Márius Pavlovič ◽  
Andrea Šagátová ◽  
Vladimír Nečas

High detection efficiency and good room temperature performance of Schottky barrier CdTe semiconductor detectors make them well suited especially for X-ray and gamma-ray detectors. In this contribution, we studied the effect of electron irradiation on the spectrometric performance of the Schottky barrier CdTe detectors manufactured from the chips of size [Formula: see text] mm3 with In/Ti anode and Pt cathode electrodes (Acrorad Co., Ltd.). Electron irradiation of the detectors was performed by 5 MeV electrons at RT using a linear accelerator UELR 5-1S. Different accumulated doses from 0.5 kGy up to 1.25 kGy were applied and the consequent degradation of the spectrometric properties was evaluated by measuring the pulse-height gamma-spectra of [Formula: see text] radioisotope source. The spectra were collected at different reverse voltages from 300 V up to 500 V. The changes of selected significant parameters, like energy resolution, peak position, detection efficiency and leakage current were monitored and evaluated to quantify the radiation hardness of the studied detectors. The results showed remarkable worsening of their spectrometric parameters even at relatively low applied doses of 1.25 kGy.


1994 ◽  
Vol 345 ◽  
Author(s):  
J. A. Greer ◽  
H. J. Van Hook ◽  
M. D. Tabat ◽  
H. Q. Nguyen ◽  
G. Gammie ◽  
...  

AbstractHigh luminance (brightness) thin-film phosphor materials have potential use in a variety of applications including heads-up, helmet-mounted, and electroluminescent displays, as well as in emerging flat-panel displays based on field emitter technology. Phosphor materials in thin film form offer several advantages over conventional powder phosphor screens. Since the film is nearly fully dense and in intimate contact with the underlying substrate, thin film phosphors transfer heat to the face plate much quicker than conventional, more porous, powder phosphor materials. This allows thin film phosphor screens to be driven at higher power levels, and therefore produce higher luminance, assuming the efficiency of the powder and film are the same. Fully dense phosphor films have smaller surface area, and will outgas less than conventional powder phosphor materials. Thin film phosphors have smaller grain sizes than conventional powder phosphor materials which will provide for smaller spot size, and thus, higher resolution. Furthermore, in applications such as field-emitter displays, powder phosphor particles can be physically dislodged from the screen due to the high electric fields produced by the large potential difference between the anode screen and gate electrode (or cathode), or dislodged by arcing which may occur if a powder particle protrudes significantly above the screen surface. Dislodged particles or damage produced by arcing could degrade display performance. Dense, thin-film phosphor materials which are well adhered to transparent substrates will provide much smoother surface morphologies, and should be able to withstand significantly higher electric field strength without arcing or screen degradation due to the dislocation of particles.


2015 ◽  
Vol 107 (14) ◽  
pp. 143902 ◽  
Author(s):  
Liang Wang ◽  
Miao Luo ◽  
Sikai Qin ◽  
Xinsheng Liu ◽  
Jie Chen ◽  
...  

2018 ◽  
Vol 27 (01n02) ◽  
pp. 1840002 ◽  
Author(s):  
Machhindra Koirala ◽  
Jia Woei Wu ◽  
Adam Weltz ◽  
Rajendra Dahal ◽  
Yaron Danon ◽  
...  

We present a cost effective and scalable approach to fabricate solid state thermal neutron detectors. Electrophoretic deposition technique is used to fill deep silicon trenches with 10B nanoparticles instead of conventional chemical vapor deposition process. Deep silicon trenches with width of 5-6 μm and depth of 60-65 μm were fabricated in a p-type Si (110) wafer using wet chemical etching method instead of DRIE method. These silicon trenches were converted into continuous p-n junction by the standard phosphorus diffusion process. 10B micro/nano particle suspension in ethyl alcohol was used for electrophoretic deposition of particles in deep trenches and iodine was used to change the zeta potential of the particles. The measured effective boron nanoparticles density inside the trenches was estimated to be 0.7 gm cm-3. Under the self-biased condition, the fabricated device showed the intrinsic thermal neutron detection efficiency of 20.9% for a 2.5 × 2.5 mm2 device area.


2022 ◽  
Vol 34 (1) ◽  
pp. 012109
Author(s):  
Z. Wang ◽  
C. Zhang ◽  
H. Xia ◽  
Q. Xie ◽  
W. Deng

Soft Matter ◽  
2006 ◽  
Vol 2 (12) ◽  
pp. 1089-1094 ◽  
Author(s):  
Violetta Olszowka ◽  
Markus Hund ◽  
Volker Kuntermann ◽  
Sabine Scherdel ◽  
Larisa Tsarkova ◽  
...  

1965 ◽  
Vol 32 (1) ◽  
pp. 70-76 ◽  
Author(s):  
R.C. Axtmann ◽  
D. Kedem

Sign in / Sign up

Export Citation Format

Share Document