scholarly journals Effects of electron irradiation on spectrometric properties of Schottky barrier CdTe radiation detectors

2020 ◽  
Vol 50 ◽  
pp. 2060017
Author(s):  
Katarína Sedlačková ◽  
Bohumír Zaťko ◽  
Márius Pavlovič ◽  
Andrea Šagátová ◽  
Vladimír Nečas

High detection efficiency and good room temperature performance of Schottky barrier CdTe semiconductor detectors make them well suited especially for X-ray and gamma-ray detectors. In this contribution, we studied the effect of electron irradiation on the spectrometric performance of the Schottky barrier CdTe detectors manufactured from the chips of size [Formula: see text] mm3 with In/Ti anode and Pt cathode electrodes (Acrorad Co., Ltd.). Electron irradiation of the detectors was performed by 5 MeV electrons at RT using a linear accelerator UELR 5-1S. Different accumulated doses from 0.5 kGy up to 1.25 kGy were applied and the consequent degradation of the spectrometric properties was evaluated by measuring the pulse-height gamma-spectra of [Formula: see text] radioisotope source. The spectra were collected at different reverse voltages from 300 V up to 500 V. The changes of selected significant parameters, like energy resolution, peak position, detection efficiency and leakage current were monitored and evaluated to quantify the radiation hardness of the studied detectors. The results showed remarkable worsening of their spectrometric parameters even at relatively low applied doses of 1.25 kGy.

1993 ◽  
Vol 302 ◽  
Author(s):  
Michael R. Squillante ◽  
Herbert Cole ◽  
Peter Waer ◽  
Gerald Entine

ABSTRACTThe use of cadmium telluride (CdTe) semiconductor nuclear detectors is continuing to expand into new areas because of their unique properties which include room temperature operation and high detection efficiency. In addition, they remain the material of choice in many critical applications such as nuclear medicine and power plant monitoring because of their reputation for reliability and long term stability1. CdTe is by far the most developed of the compound semiconductors used in nuclear detector applications and it offers a number of significant benefits to researchers, clinicians and engineers who have special requirements relating to size, sensitivity and operating temperature.Recently, there have been improvements in the growth of the crystalline material and in the fabrication procedures which have resulted in better performance and in the ability to produce arrays. This article describes the physical and electronic properties of CdTe nuclear detectors, discusses how the crystal growth and device fabrication procedures can affect these properties, and compares the performance to CdZnTe detectors.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 341
Author(s):  
Valerio D’Andrea ◽  
Natalia Di Marco ◽  
Matthias Bernhard Junker ◽  
Matthias Laubenstein ◽  
Carla Macolino ◽  
...  

In the global landscape of neutrinoless double beta (0νββ) decay search, the use of semiconductor germanium detectors provides many advantages. The excellent energy resolution, the negligible intrinsic radioactive contamination, the possibility of enriching the crystals up to 88% in the 76Ge isotope as well as the high detection efficiency, are all key ingredients for highly sensitive 0νββ decay search. The Majorana and Gerda experiments successfully implemented the use of germanium (Ge) semiconductor detectors, reaching an energy resolution of 2.53 ± 0.08 keV at the Qββ and an unprecedented low background level of 5.2×10−4 cts/(keV·kg·yr), respectively. In this paper, we will review the path of 0νββ decay search with Ge detectors from the original idea of E. Fiorini et al. in 1967, to the final recent results of the Gerda experiment setting a limit on the half-life of 76Ge 0νββ decay at T1/2>1.8×1026 yr (90% C.L.). We will then present the LEGEND project designed to reach a sensitivity to the half-life up to 1028 yr and beyond, opening the way to the exploration of the normal ordering region.


1994 ◽  
Vol 299 ◽  
Author(s):  
Michael R. Squillante ◽  
Herbert Cole ◽  
Peter Waer ◽  
Gerald Entine

AbstractThe use of cadmium telluride (CdTe) semiconductor nuclear detectors is continuing to expand into new areas because of their unique properties which include room temperature operation and high detection efficiency. In addition, they remain the material of choice in many critical applications such as nuclear medicine and power plant monitoring because of their reputation for reliability and long term stability1. CdTe is by far the most developed of the compound semiconductors used in nuclear detector applications and it offers a number of significant benefits to researchers, clinicians and engineers who have special requirements relating to size, sensitivity and operating temperature.Recently, there have been improvements in the growth of the crystalline material and in the fabrication procedures which have resulted in better performance and in the ability to produce arrays. This article describes the physical and electronic properties of CdTe nuclear detectors, discusses how the crystal growth and device fabrication procedures can affect these properties, and compares the performance to CdZnTe detectors.


2021 ◽  
Vol 63 (3) ◽  
pp. 46-49
Author(s):  
Dinh Khang Pham ◽  
◽  
Tien Hung Dinh ◽  
Kim Chien Dinh ◽  
Van Hiep Cao ◽  
...  

Localization of the scintillation detectors manufacturing process has many benefits because of the high detection efficiency of the detectors, user-friendly, and consistent with general research objectives. Using a photodiode instead of a photomultiplier tube (PMT) allows saving energy, shortening the detector volume, and removing high voltage power supply and amplifier. The combination of CsI(Tl) scintillator, avalanche photodiode, charge sensitive preamplifier, wide range amplifier, and power supply system has been integrated into the detector. This study presents new results in manufacturing a home-made scintillation detector using avalanche photodiode. The detectors of this type can be used in hospitals, in the nuclear laboratory of universities for the students training, etc.


Author(s):  
He Li-xia ◽  
Hao Xiao-yong ◽  
He Gao-kui

TlBr is a kind of semiconductor material. Due to its promising physical properties and can be used at room temperature, it is continually studied as X and gamma ray detectors candidate material. Both of its atomic number and density are high. It also has large band-gap (B = 2.68eV) and low ionization energy. TlBr device exhibits high detection efficiency and excellent energy resolution. It can be easily fabricated or compacted in small housing. So it is a reasonable selection in the fields of nuclear material inspection and safeguards property, national security, spatial and high energy physics researches. The paper investigates the TlBr radioactive detector development and fabrication procedures. The processing detail information and signals collection are emphasized in different section. The prototype detectors were irradiated by Am-241 and corresponding spectrum was obtained. The photoelectric peak at 59.5keV is distinguished visible and the best resolution at 59.5keV is 4.15keV (7%).


1993 ◽  
Vol 302 ◽  
Author(s):  
G.F. Knoll ◽  
D.S. Mcgregor

ABSTRACTThe modes of operation of semiconductor detectors are reviewed, together with the influence of charge carrier collection in developing a signal pulse for spectroscopic applications. Because of the importance of charge trapping in many semiconductors of interest in the fabrication of room temperature radiation detectors, the effects of incomplete charge collection are quantified. Calculated results are presented for the expected pulse height and energy resolution under a variety of charge collection conditions.


2014 ◽  
Vol 1 (1) ◽  
pp. 293-297 ◽  
Author(s):  
M. Beilicke ◽  
R. Cowsik ◽  
P. Dowkontt ◽  
Q. Guo ◽  
F. Kislat ◽  
...  

X-ray polarimetry promises to give qualitatively new information bout high-energy astrophysical sources, such as binary black hole  systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested ahard X-ray polarimeter, X-<em>Calibur</em>, to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope.X-<em>Calibur</em> combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20−60 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation; in principal, a similar space-borne experiment could be operated in the 5−100 keV regime. X-<em>Calibur</em> achieves a high detection efficiency of order unity.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
pp. 041002
Author(s):  
R. Malki ◽  
A. Tebboune ◽  
L. Ghalouci ◽  
A. Saim ◽  
A. H. Belbachir

The structural and electronic properties of  and semiconductor detectors at various concentrations x = 0, 0.25, 0.5, 0.75 and 1 of Selenium (Se) were determined by using the full potential-linearized augmented plane wave (FP-LAPW) based on the density functional theory (DFT). The compositional dependence of such properties was analysed and discussed. The concentration dependence of lattice parameter and bulk modulus show nonlinearity. All the investigated alloys have a direct bandgap (Γ-Γ) which decreasesnonlinearly with increase in Se concentration. On the other hand, Geant4 simulations have been performed for studying the absolute and full-energy peak detection efficiencies and energy resolution at 1.5”×1.5” of these alloys as semiconductor detectors in the 511-1332 keV gamma-ray energy range. Ours findings are in a good agreement with the available theoretical and experimental data. We hope that our results serve as are reference for future theoretical and experimental researches.


2009 ◽  
Vol 1164 ◽  
Author(s):  
Steven L Bellinger ◽  
Walter J McNeil ◽  
Douglas Scott McGregor

AbstractMicrostructured semiconductor neutron detectors have superior efficiency performance over thin-film coated planar semiconductor detectors. The microstructured detectors have patterns deeply etched into the semiconductor substrates subsequently backfilled with neutron reactive materials. The detectors operate as pn junction diodes. Two variations of the diodes have been fabricated, which either have a rectifying pn junction selectively formed around the etched microstructures or have pn junctions conformally diffused inside the microstructures. The devices with the pn junctions formed in the perforations have lower leakage currents and better signal formation than the devices with selective pn junctions around the etched patterns. Further, pulse height spectra from conformally diffused detectors have the main features predicted by theoretical models, whereas pulse height spectra from the selectively diffused detectors generally do not show these features. The improved performance of the conformal devices is attributed to stronger and more uniform electric fields in the detector active region. Also, system noise, which is directly related to leakage current, has been dramatically reduced as a result of the conformal diffusion fabrication technique. A sinusoidal patterned device with 100 μm deep perforations backfilled with 6LiF was determined to have 11.9 ± 0.078% intrinsic detection efficiency for 0.0253 eV neutrons, as calibrated with thin-film planar semiconductor devices and a 3He proportional counter.


Sign in / Sign up

Export Citation Format

Share Document