First Principles Study of Metal/Bi2Te3Interfaces: Implications to Improve Contact Resistance

2009 ◽  
Vol 1166 ◽  
Author(s):  
Ka Xiong ◽  
Weichao Wang ◽  
Husam N Alshareef ◽  
Rahul P Gupta ◽  
John B White ◽  
...  

AbstractWe investigate the band offsets and stability for Ni/Bi2Te3and Co/Bi2Te3interfaces by first principles calculations. It is found that the surface termination strongly affects the band offsets. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energies for Co/Bi2Te3interfaces are much lower than those of Ni/Bi2Te3interfaces. Our calculations are consistent with the experimental data.

2012 ◽  
Vol 11 (06) ◽  
pp. 1261-1280 ◽  
Author(s):  
HUANWEN WU ◽  
NING ZHANG ◽  
HONGMING WANG ◽  
SANGUO HONG

Geometric and electronic properties and vacancy formation energies for two kinds of oxygen-vacancy Cu 2 O (111) surfaces have been investigated by first-principles calculations. Results show that the relaxation happens mainly on the top three trilayers of surfaces. Two vacancies trap electrons of -0.11e and -0.27e, respectively. The effects of oxygen vacancies on the electronic structures are found rather localized. The electronic structures suggest that the oxygen vacancies enhance the electron donating ability of the surfaces to some extent. The energies of 1.75 and 1.43 eV for the formation of oxygen vacancies are rather low, which indicates the partially reduced surfaces are stable and easy to produce.


2014 ◽  
Vol 1588 ◽  
Author(s):  
Kazuhiro Shimada ◽  
Tomoyasu Hiramatsu ◽  
Hitoshi Kato

ABSTRACTWe performed first-principles calculations to obtain the phonon deformation potential (PDP) constants of wurtzite ZnO. The results are in good agreement with available experimental data except for a few PDP constants. We also found that the phonon frequencies of the A1 and B2 modes have relatively stronger nonlinear characteristics than the other modes.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ning Zhao ◽  
Udo Schwingenschlögl

AbstractUtilizing a two-dimensional material in an electronic device as channel layer inevitably involves the formation of contacts with metallic electrodes. As these contacts can dramatically affect the behavior of the device, we study the electronic properties of monolayer Janus MoSSe in contact with different metallic electrodes by first-principles calculations, focusing on the differences in the characteristics of contacts with the two sides of MoSSe. In particular, we demonstrate that the Fermi level pinning is different for the two sides of MoSSe, with the magnitude resembling that of MoS2 or MoSe2, while both sides can form Ohmic contacts with common electrode materials without any further adaptation, which is an outstanding advantage over MoS2 and MoSe2.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26432-26443
Author(s):  
Chol-Hyok Ri ◽  
Yun-Sim Kim ◽  
Un-Gi Jong ◽  
Yun-Hyok Kye ◽  
Se-Hun Ryang ◽  
...  

We propose lead-free potassium iodide perovskite solid solutions KBI3 with B-site mixing between Ge/Sn and Mg as potential candidates for photocatalysts based on systematic first-principles calculations.


Author(s):  
Qiaoling Chen ◽  
Weiguo Jing ◽  
Yau-Yuen Yeung ◽  
Min Yin ◽  
Chang-Kui Duan

Bismuth dopants have attracted intensive studies experimentally for their extremely broad nearinfrared luminescence. Here we performed first-principles calculations to investigate the site occupancy and valence state by taking the condition...


2005 ◽  
Vol 475-479 ◽  
pp. 3111-3114
Author(s):  
Masataka Mizuno ◽  
Hideki Araki ◽  
Yasuharu Shirai

Some of intermetallic compounds exist in a wide range of concentration around the stoichiometric composition. First-principles electronic structure calculations have been performed for constitutional defects in non-stoichiometric CoAl and CoTi in order to investigate their stabilities and structural relaxations induced by constitutional defects. For the evaluation of stabilities of constitutional defects, the compositional dependence curves both of formation energies and of lattice parameters are obtained by the calculations employing supercells in various sizes. The lattice relaxations around constitutional defects are discussed by analyzing the change in electronic structures induced by constitutional defects.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 41057-41062 ◽  
Author(s):  
Xiaofeng Yang ◽  
Zongbao Li ◽  
Xinyu Li ◽  
Ao Wang ◽  
Lichao Jia ◽  
...  

The oxygen reduction reaction properties on PdO and Zr-doped PdO surfaces, and the relative stability of the concerned surfaces, have been studied by first-principles calculations.


2005 ◽  
Vol 475-479 ◽  
pp. 3095-3098
Author(s):  
Katsuyuki Matsunaga ◽  
Teruyasu Mizoguchi ◽  
Atsutomo Nakamura ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

First-principles pseudopotential calculations were performed to investigate atomic and electronic structures of titanium (Ti) dopants in alumina (Al2O3). It was found that a substitutional Ti3+ defect induced an extra level occupied by one electron within the band gap of Al2O3. When two or more substitutional Ti3+ defects were located closely to each other, the defect-induced levels exhibited strong bonding interactions, and their formation energies decreased with increasing numbers of Ti3+ defects. This indicates that association and clustering of substitutional Ti3+ defects in Al2O3 can take place due to the interaction of the defect-induced levels.


Sign in / Sign up

Export Citation Format

Share Document