Controlled Growth and Characterization of Non-tapered InN Nanowires on Si(111) Substrates by Molecular Beam Epitaxy

2009 ◽  
Vol 1178 ◽  
Author(s):  
Yi-Lu Chang ◽  
Arya Fatehi ◽  
Feng Li ◽  
Zetian Mi

AbstractWe have performed a detailed investigation of the molecular beam epitaxial (MBE) growth and characterization of InN nanowires spontaneously formed on Si(111) substrates under nitrogen rich conditions. Controlled epitaxial growth of InN nanowires (NWs) has been demonstrated by using an in situ deposited thin (˜ 0.5 nm) In seeding layer prior to the initiation of growth. By applying this technique, we have achieved non-tapered epitaxial InN NWs that are relatively free of dislocations and stacking faults. Such InN NW ensembles display strong photoluminescence (PL) at room temperature and considerably reduced spectral broadening, with very narrow spectral linewidths of 22 and 40 meV at 77 K and 300 K, respectively.

1991 ◽  
Vol 220 ◽  
Author(s):  
S. Fukatsu ◽  
K. Fujita ◽  
H. Yaguchi ◽  
Y. Shiraki ◽  
R. Ito

Kinetics of Ge segregation during molecular beam epitaxial growth is described. It is shown that the Ge segregation is self-limited in Si epitaxial overlayers due to a high concentration effect when the Ge concentration exceeds 0.01 monolayer (ML). As a result, segregation profiles of Ge are found to decay non-exponentially in the growth direction. This unusual Ge segregation was found to be suppressed with an adlayer of strong segregant, Sb, during the kinetic MBE growth. We develop a novel scheme to realize sharp Si/Ge interfaces with strong segregante. Lower limit of the effective amount of Sb for this was found to be 0.75 ML.


1999 ◽  
Vol 595 ◽  
Author(s):  
V. Ramachandran ◽  
R. M. Feenstra ◽  
J. E. Northrup ◽  
D. W. Greve

AbstractExposure of wurtzite GaN films grown on Si-polar 6H-SiC(0001) to magnesium during molecular beam epitaxy (MBE) has been studied. In the nitrogen rich regime of MBE growth, GaN films are known to grow with rough morphology. We observe on GaN(0001) that small doses of Mg act as a surfactant, smoothing out this roughness. An interpretation of this surfactant behavior is given in terms of electron counting arguments for the surface reconstructions. Previously, we have reported that larger doses of Mg lead to inversion of the Ga-polar GaN film to produce N-polar GaN. Several Mg-related reconstructions of the resulting GaN(000 ) surface are reported.


1989 ◽  
Vol 169 ◽  
Author(s):  
D.G. Schlomtt ◽  
J.N. Eckstein ◽  
I. Bozo Vic ◽  
A.F. Marshall ◽  
J.T. Sizemore ◽  
...  

AbstractThe in situ epitaxial growth of Bi‐Sr‐Ca‐Cu‐O films by molecular beam epitaxy (MBE) is reported. The suitability of ozone to the MBE growth of cuprate superconductors is discussed. Molecular beams of the constituents were periodically shuttered to grow various Bi2Sr2Can‐1CunOx phases, including 2201, 2212,2223,2245, and layered mixtures of these phases. Using these techniques a superconducting film with TConset near 100 K and Tc (ρ=0) of 81 K was achieved under entirely MBE conditions (Pchamber≤xl0‐4 Torr during growth and cooling). The films are smooth on an atomic scale. The results demonstrate the ability of shuttered MBE growth to selectively grow Bi2Sr2Can‐1CunOx phases.


1995 ◽  
Vol 187 (2) ◽  
pp. 309-313
Author(s):  
J. M. Gaines ◽  
C. A. Ponzoni

Sign in / Sign up

Export Citation Format

Share Document