Selective Radionuclide (Cs+, Sr2+, and Ni2+) Ion-exchange by K2xMgxSn3-xS6(x=0.5-0.95) (KMS-2)

2010 ◽  
Vol 1265 ◽  
Author(s):  
Joshua Leighton Mertz ◽  
Emmanouil J. Manos ◽  
Mercouri Kanatzidis

Abstract137Cs and90Sr, both byproducts of the fission process, make up the majority of high-level waste from nuclear power plants.63Ni is a byproduct of the erosion-corrosion process of the reactor components in nuclear energy plants. The concentrations of these ions in solution determine the Waste Class (A,B, or C) and thus selective removal of these ions over large excesses of other ions is necessary to reduce waste and cut costs. Herein we report the use of the Inorganic Ion Specific Media (ISM) K2xMgxSn3-xS6(x=0.5-0.9) (KMS-2) for the ion exchange of Cs+, Sr2+, and Ni2+in several different conditions. We will also report the stability of this new material in the general conditions found at nuclear power plants (pH ˜6-8) and DOE sites (pH>10). Measurements at low concentrations were conducted with inductively coupled plasma mass spectrometry and Kd values are reported for each of the ions in a variety of conditions.

Author(s):  
Andre´ Voßnacke ◽  
Wilhelm Graf ◽  
Roland Hu¨ggenberg ◽  
Astrid Gisbertz

The revised German Atomic Act together with the Agreement between the German Government and the German Utilities of June 11, 2001 form new boundary conditions that considerably influence spent fuel strategies by stipulation of lifetime limitations to nuclear power plants and termination of reprocessing. The contractually agreed return of reprocessing residues comprises some 156 casks containing vitrified highly active waste, the so-called HAW or glass canisters, coming form irradiated nuclear fuel assemblies to be shipped from COGEMA, France and BNFL, UK to Germany presumably until 2011. Several hundred casks with compacted residues and other waste will follow. The transports are scheduled presumably beyond 2020. The central interim storage facilities in Ahaus and Gorleben, formerly intended to accumulate up to 8,000 t of heavy metal (HM) of spent fuel from German nuclear power plants, offer sufficient capacity to receive the totality of residues to be returned from reprocessing abroad. GNB has developed, tested, licensed, fabricated, loaded, transported and stored a large number of casks for spent fuel and is one of the world leaders for delivering spent fuel and high level waste casks. Long-term intermediate storage of spent fuel is carried out under dry conditions using these casks that are licensed for transport as well as for storage. Standardized high performance casks such as the types CASTOR® HAW 20/28 CG, CASTOR® V/19 and CASTOR® V/52 meet the needs of most nuclear power plants in Germany. Up to now GNS has co-ordinated the loading and transport of 27 casks loaded with 28 canisters each from COGEMA back to Germany for storage in Gorleben for up to 40 years. In all but one case the cask type CASTOR® HAW 20/28 CG has been used.


1985 ◽  
Vol 50 ◽  
Author(s):  
Sten Bjurström ◽  
Tönis Papp

Nuclear power plays an important role in the Swedish power production. From this year on 45–50% of the Swedish electricity will be produced by nuclear power plants, the rest being hydro power.


Author(s):  
Mark S. Denton ◽  
Mercouri G. Kanatzidis

Highly selective removal of Cesium and Strontium is critical for waste treatment and environmental remediation. Cesium-137 is a beta-gamma emitter and Strontium-90 is a beta emitter with respective half-lives of 30 and 29 years. Both elements are present at many nuclear sites. Cesium and Strontium can be found in wastewaters at Washington State’s Hanford Site, as well as in wastestreams of many Magnox reactor sites. Cesium and Strontium are found in the Reactor Coolant System of light water reactors at nuclear power plants. Both elements are also found in spent nuclear fuel and in high-level waste (HLW) at DOE sites. Cesium and Strontium are further major contributors to the activity and the heat load. Therefore, technologies to extract Cesium and Strontium are critical for environmental remediation waste treatment and dose minimization. Radionuclides such as Cesium-137 and Strontium-90 are key drivers of liquid waste classification at light water reactors and within the DOE tank farm complexes. The treatment, storage, and disposal of these wastes represents a major cost for nuclear power plant operators, and comprises one of the most challenging technology-driven projects for the DOE Environmental Management (EM) program. Extraction technologies to remove Cesium and Strontium have been an active field of research. Four notable extraction technologies have been developed so far for HLW: solvent extraction, prussian blue, crystalline silicotitanate (CST) and organic ion-exchangers (e.g., resorcinol formaldehyde and SuperLig). The use of one technology over another depends on the specific application. For example, the waste treatment plant (WTP) at Hanford is planning on using a highly-selective organic ion-exchange resin to remove Cesium and Strontium. Such organic ion-exchangers use molecular recognition to selectively bind to Cesium and Strontium. However, these organic ion-exchangers are synthesized using multi-step organic synthesis. The associated cost to synthesize organic ion-exchangers is prohibitive and seriously limits the scope of applications for organic ion-exchangers. Further issues include resin swelling, potential hydrogen generation and precluding final disposal by vitrification without further issues. An alternative to these issues of organic ion-exchangers is emerging. Inorganic ion-exchangers offer a superior chemical, thermal and radiation stability which is simply not achievable with organic compounds. They can be used to remove both Cesium as well as Strontium with a high level of selectivity under a broad pH range. Inorganic ion-exchangers can operate at acidic pH where protons inhibit ion exchange in alternative technologies such as CST. They can also be used at high pH which is typically found in conditions present in many nuclear waste types. For example, inorganic ion-exchangers have shown significant Strontium uptake from pH 1.9 to 14. In contrast to organic ion-exchangers, inorganic ion-exchangers are not synthesized via complex multi-step organic synthesis. Therefore, inorganic ion-exchangers are substantially more cost-effective when compared to organic ion-exchangers as well as CST. Selective removal of specified isotopes through ion exchange is a common and proven treatment method for liquid waste, yet various aspects of existing technologies leave room for improvement with respect to both cost and effectiveness. We demonstrate a novel class of inorganic ion-exchangers for the selective removal of cesium and strontium (with future work planned for uranium removal), the first of a growing family of patent-pending, potentially elutable, and paramagnetic ion-exchange materials [1]. These highly selective inorganic ion-exchangers display strong chemical, thermal and radiation stability, and can be readily synthesized from low-cost materials, making them a promising alternative to organic ion-exchange resins and crystalline silicotitanate (CST). By nature, these inorganic media lend themselves more readily to volume reduction (VR) by vitrification without the issues faced with organic resins. In fact, with a simple melting of the KMS-1 media at 650–670 deg. C (i.e., well below the volatilization temperature of Cs, Sr, Mn, Fe, Sb, etc.), a VR of 4:1 was achieved. With true pyrolysis at higher temperatures or by vitrification, this VR would be much higher. The introduction of this new family of highly specific ion-exchange agents has potential to both reduce the cost of waste processing, and enable improved waste-classification management in both nuclear power plants (for the separation of Class A from B/C wastes) and DOE tank farms [for the separation of low level waste (LLW) from high level waste (HLW)]. In conclusion, we demonstrate for the first time a novel inorganic ion-exchanger for the selective removal of Cesium and Strontium. These inorganic ion-exchangers are chemical, thermal and radiation stable. These inorganic ion-exchangers can be synthesized in a cost-effective way which makes them significantly more effective than organic ion-exchange resin and CST. Finally, new thermal options are afforded for their final volume reduction, storage and disposal.


10.6036/10156 ◽  
2021 ◽  
Vol 96 (4) ◽  
pp. 355-358
Author(s):  
Pablo Fernández Arias ◽  
DIEGO VERGARA RODRIGUEZ

Centralized Temporary Storage Facility (CTS) is an industrial facility designed to store spent fuel (SF) and high level radioactive waste (HLW) generated at Spanish nuclear power plants (NPP) in a single location. At the end of 2011, the Spanish Government approved the installation of the CTS in the municipality of Villar de Cañas in Cuenca. This approval was the outcome of a long process of technical studies and political decisions that were always surrounded by great social rejection. After years of confrontations between the different political levels, with hardly any progress in its construction, this infrastructure of national importance seems to have been definitively postponed. The present research analyzes the management strategy of SF and HLW in Spain, as well as the alternative strategies proposed, taking into account the current schedule foreseen for the closure of the Spanish NPPs. In view of the results obtained, it is difficult to affirm that the CTS will be available in 2028, with the possibility that its implementation may be delayed to 2032, or even that it may never happen, making it necessary to adopt an alternative strategy for the management of GC and ARAR in Spain. Among the different alternatives, the permanence of the current Individualized Temporary Stores (ITS) as a long-term storage strategy stands out, and even the possibility of building several distributed temporary storage facilities (DTS) in which to store the SF and HLW from several Spanish NPP. Keywords: nuclear waste, storage, nuclear power plants.


Author(s):  
Jay F. Kunze ◽  
James M. Mahar ◽  
Kellen M. Giraud ◽  
C. W. Myers

Siting of nuclear power plants in an underground nuclear park has been proposed by the authors in many previous publications, first focusing on how the present 1200 to 1600 MW-electric light water reactors could be sited underground, then including reprocessing and fuel manufacturing facilities, as well as high level permanent waste storage. Recently the focus has been on siting multiple small modular reactor systems. The recent incident at the Fukushima Daiichi site has prompted the authors to consider what the effects of a natural disaster such as the Japan earthquake and subsequent tsunami would have had if these reactors had been located underground. This paper addresses how the reactors might have remained operable — assuming the designs we previously proposed — and what lessons from the Fukushima incident can be learned for underground nuclear power plant designs.


Author(s):  
Eugene Imbro ◽  
Thomas G. Scarbrough

The U.S. Nuclear Regulatory Commission (NRC) has established an initiative to risk-inform the requirements in Title 10 of the Code of Federal Regulations (10 CFR) for the regulatory treatment of structures, systems, and components (SSCs) used in commercial nuclear power plants. As discussed in several Commission papers (e.g., SECY-99-256 and SECY-00-0194), Option 2 of this initiative involves categorizing plant SSCs based on their safety significance, and specifying treatment that would provide an appropriate level of confidence in the capability of those SSCs to perform their design functions in accordance with their risk categorization. The NRC has initiated a rulemaking effort to allow licensees of nuclear power plants in the United States to implement the Option 2 approach in lieu of the “special treatment requirements” of the NRC regulations. In a proof-of-concept effort, the NRC recently granted exemptions from the special treatment requirements for safety-related SSCs categorized as having low risk significance by the licensee of the South Texas Project (STP) Units 1 and 2 nuclear power plant, based on a review of the licensee’s high-level objectives of the planned treatment for safety-related and high-risk nonsafety-related SSCs. This paper discusses the NRC staff’s views regarding the treatment of SSCs at STP described by the licensee in its updated Final Safety Analysis Report (FSAR) in support of the exemption request, and provides the status of rulemaking that would incorporate risk insights into the treatment of SSCs at nuclear power plants.


Atomic Energy ◽  
2012 ◽  
Vol 111 (4) ◽  
pp. 276-281
Author(s):  
D. N. Babkin ◽  
N. A. Prokhorov ◽  
V. T. Sorokin ◽  
A. V. Demin ◽  
V. V. Iroshnikov

Author(s):  
Jaroslav Bartonicek ◽  
Klaus-Juergen Metzner ◽  
Friedrich Schoeckle

A comprehensive life time management has to take care of all safety and availability relevant components in nuclear power plants, with different intensity, of course. For instance, mechanical systems and components can be basically classified/ranked into three different groups: (1): The quality status of the components in this group has to be guaranteed on a pre-defined (high) level. (2): The quality status of the components in this group has to be maintained on its actual level. (3): Other components with no specific quality demands. Regarding the first group, integrity has to be guaranteed. Therefore it is necessary to monitor the possible root causes of degradation mechanisms during plant operation; thus the degradation effects can be assessed and — more important — controlled to maintain the safety standard on the demanded high level without any compromise. The monitoring of consequences of degradation mechanisms is being performed as an additional redundant measure. The requirements to maintain the quality status of the second group of components can be fulfilled by monitoring of the consequences of operational degradation mechanisms to be performed by preventive maintenance activities, in terms of tests, inspections and repairs, using either time dependant procedures or component condition orientated methods. For the third group of components, no preventive action is necessary. However, failures and malfunctions have to be assessed statistically to avoid a reduction of the required basic component quality. In the first two groups all safety relevant components and systems are included. Generally, aging management programs cover these two groups of components; life time management covers all of above groups. This paper concentrates on mechanical systems and components; it summarizes the practical approach to life time management as it is realized in German nuclear power plants. The application is discussed using dedicated examples.


Sign in / Sign up

Export Citation Format

Share Document