Ion Implantation and Ion Beam Analysis of Lithium Niobate

1988 ◽  
Vol 128 ◽  
Author(s):  
G. W. Arnold

ABSTRACTImplantations of He and Ti were made into LiNbO3 and the H and Li profiles determined by elastic recoil detection (ERD) techniques. The loss of Li and gain of H depends upon the supply of surface H (surface contaminants or ambient atmosphere). For 50 keV He implants into LiNbO3 through a 200 Å Al film, the small Li loss is governed by the interface H. This is also the case for He implants into uncoated LiNbO3 in a beam line with low hydrocarbon surface contamination; similar implants under conditions of greater hydrocarbon deposition result in proportionally larger Li loss and H gain in the implant damage region. The exchange is possible only for those He energies, i.e., 50 keV, where the damage profile intersects the surface. For Ti implants Li is lost with little H gain. For this case the Li loss is believed to result from radiation-enhanced diffusion. Where He implantation is used to establish waveguiding in LiNbO3, the presence or absence of H in the implanted region is crucial with regard to refractive index stability, due to the replacement of H by Li from the bulk.

2005 ◽  
Vol 483-485 ◽  
pp. 287-290
Author(s):  
H. Colder ◽  
M. Morales ◽  
Richard Rizk ◽  
I. Vickridge

Co-sputtering of silicon and carbon in a hydrogenated plasma (20%Ar-80%H2) at temperatures, Ts, varying from 200°C to 600°C has been used to grow SiC thin films. We report on the influence of Ts on the crystallization, the ratio Si/C and the hydrogen content of the grown films. Film composition is determined by ion beam analysis via Rutherford backscattering spectrometry, nuclear reaction analysis via the 12C(d,p0)13C nuclear reaction and elastic recoil detection analysi(ERDA) for hydrogen content. Infrared absorption (IR) has been used to determine the crystalline fraction of the films and the concentration of the hydrogen bonded to Si or to C. Complementary to IR, bonding configuration has been also characterized by Raman spectroscopy. As Ts is increased, the crystalline fraction increases and the hydrogen content decreases, as observed by both ERDA and IR. It also appears that some films contain a few Si excess, probably located at the nanograin boundaries.


1998 ◽  
Vol 513 ◽  
Author(s):  
V. Atluri ◽  
N. Herbots

ABSTRACTSi(100) is H-passivated via a modified pre-RCA cleaning followed by etching in HF:alcohol, to produce ordered (1 × 1) templates which desorb at low temperature (T ≥ 600°C). Four sets of 12 wafers, each set processed identically, are used to test reproducibility, and are characterized by Ion Beam Analysis (IBA), Tapping Mode Atomic Force Microscope (TMAFM), and Fourier Transform Infrared Spectroscopy (FTIR). The absolute coverage of oxygen and carbon is measured by ion channeling combined with nuclear resonance at 3.05 MeV for oxygen and 4.265 MeV for carbon, improving the signal to noise by a factor 10 for oxygen and by 120 for carbon. It is then possible for the first time to measure ordering of oxygen atoms with respect to the surface by comparing the amount of oxygen from rotating random spectra to the disordered oxygen measured by channeling. Hydrogen is measured via the elastic recoil detection (ERD) of 4He2+ at 2.8 MeV.Si(100) etched in HF:methanol after a modified preliminary RCA cleaning yields the cleanest surface. The data suggest that Si(100) passivated by HF in alcohol is terminated by an ordered hydroxide layer, which desorbs at lower temperatures than the more refractory Si02.


2005 ◽  
Vol 908 ◽  
Author(s):  
Florian Schwarz ◽  
Joerg K. N. Lindner ◽  
Maik Häeberlen ◽  
Goetz Thorwarth ◽  
Claus Hammerl ◽  
...  

AbstractMultilayered and nanostructured coatings of amorphous carbon (DLC), silicon composite multilayers and nanocluster containing films today have great potential for applications as hard coatings, wear reduction layers and as diffusion barriers in biomaterials. Plasma immersion ion implantation and deposition (PIII&D) is a powerful technique to synthesize such films. The quantitative nanoscale analysis of the elemental distribution in such multielemental films and thin film stacks however is demanding.In this paper it is shown how the high spatial resolution capabilities of energy filtered trans-mission electron microscopy (EFTEM) chemical analysis can be combined with accurate and standard-less concentration determination of ion beam analysis (IBA) techniques like Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) to achieve absolute and accurate multielement concentration profiles in complicated nanomaterials.


1993 ◽  
Vol 316 ◽  
Author(s):  
G.W. Arnold ◽  
G. Battaglin ◽  
P. Mazzoldi

ABSTRACTDamage depths for Ar-implanted fused silica have been examined by Rutherford backscattering (RBS) and elastic recoil detection (ERD) ion-beam analysis. H incursion (6 at. %) from ambient atmospheres to twice TRIM values was found for damage depths which intersected the surface. H implants were used to decorate Ar damage for deeper Ar implants. The incursion of H for high-fluence implants is important for optoelectronic applications.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Edward J. Kramer

Ion-beam analysis of chemical composition as a function of depth is by now well-established for inorganic materials and is an important method of investigating growth of thin films. It has been applied to polymers much more recently, perhaps because fairly obvious problems with radiation damage discouraged workers in this field initially. Ion-beam analysis has developed, however, into a analytical tool that complements other methods, such as x-ray photoelectron spectroscopy and neutron reflection, very well. The purpose of this short article is to give the reader an introduction to its current uses in polymers.The ion beams of ion-beam analysis are typically highly energetic (1–5 MeV) beams of 4He++. While other beams are used, for example, 3He and 15N, alpha particle beams are used in the vast majority of experiments reported in the literature. Two major categories of experiments are carried out with such beams. Rutherford backscattering (RBS) spectrometry to detect heavy elements in the polymer and forward recoil spectrometry (FRES) (also known as elastic recoil detection) to detect the isotopes hydrogen and deuterium. The basic principles for each method are similar.


2020 ◽  
Vol 4 (4) ◽  
pp. 40
Author(s):  
Keisuke Yasuda

The time-of-flight elastic recoil detection analysis (TOF-ERDA) method is one of the ion beam analysis methods that is capable of analyzing light elements in a sample with excellent depth resolution. In this method, simultaneous measurements of recoil ion energy and time of flight are performed, and ion mass is evaluated. The energy of recoil ions is calculated from TOF, which gives better energy resolution than conventional Silicon semiconductor detectors (SSDs). TOF-ERDA is expected to be particularly applicable for the analysis of light elements in thin films. In this review, the principle of TOF-ERDA measurement and details of the measurement equipment along with the performance of the instrumentation, including depth resolution and measurement sensitivity, are described. Examples of TOF-ERDA analysis are presented with a focus on the results obtained from the measurement system developed by the author.


1997 ◽  
Vol 504 ◽  
Author(s):  
J. C. Barbour ◽  
B. G. Potter

ABSTRACTHydrogen in deposited optical ceramics can modify the optical properties, and therefore the role of the hydrogen needs to be understood to control its effects. Erbium-doped amorphous alumina films were deposited using simultaneous electron beam evaporation of aluminum and erbium while bombarding the sample with 30 eV 02+ ions from an electron cyclotron resonance (ECR) plasma. The hydrogen content was measured, using elastic recoil detection, as a function of isochronal annealing treatments. The data was fit to a simple trap-release model in order to determine an effective activation energy for the thermal release of H from alumina and Er-doped alumina. The intensity of the ion-beam stimulated luminescence from these samples was monitored in the visible and near infrared regions as a function of the thermal treatments. In order to gain a better understanding of the influence of hydrogen, the ionoluminescence (IL) data from samples containing hydrogen were fit with a simple linear equation.


Sign in / Sign up

Export Citation Format

Share Document