High Quality Epitaxial Growth on in-Situ Patterned Inp Substrates

1989 ◽  
Vol 145 ◽  
Author(s):  
H. Temkin ◽  
L. R. Harriott ◽  
J. Weiner ◽  
R. A. Hamm ◽  
M. B. Panish

AbstractWe demonstrate a vacuum lithography process which uses a finely focused Ga ion beam to write the pattern which is then transferred to the InP pattern by low energy dry etching. Surface steps on the order of 1000-2000A in height, and lateral resolution limited only by size of the ion beam, can be efficiently prepared using moderate Ga ion fluences. The surfaces prepared by this process are damage free and suitable for epitaxial overgrowth. GaInAs/InP heterostructures grown on in-situ patterned substrates show excellent morphology and high luminescence efficiency.

Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


1991 ◽  
Vol 237 ◽  
Author(s):  
Harry A. Atwater ◽  
C. J. Tsai ◽  
S. Nikzad ◽  
M.V.R. Murty

ABSTRACTRecent progress in low energy ion-surface interactions, and the early stages of ion-assisted epitaxy of semiconductor thin films is described. Advances in three areas are discussed: dynamics of displacements and defect incorporation, nucleation mechanisms, and the use of ion bombardment to modify epitaxial growth kinetics in atrulysurface-selective manner.


2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


2011 ◽  
Vol 679-680 ◽  
pp. 59-62 ◽  
Author(s):  
Stefano Leone ◽  
Yuan Chih Lin ◽  
Franziska Christine Beyer ◽  
Sven Andersson ◽  
Henrik Pedersen ◽  
...  

The epitaxial growth at 100 µm/h on on-axis 4H-SiC substrates is demonstrated in this study. Chloride-based CVD, which has been shown to be a reliable process to grow SiC epitaxial layers at rates above 100 µm/h on off-cut substrates, was combined with silane in-situ etching. A proper tuning of C/Si and Cl/Si ratios and the combination of different chlorinated precursors resulted in the homoepitaxial growth of 4H-SiC on Si-face substrates at high rates. Methyltrichlorosilane, added with silane, ethylene and hydrogen chloride were employed as precursors to perform epitaxial growths resulting in very low background doping concentration and high quality material, which could be employed for power devices structure on basal-plane-dislocation-free epitaxial layers.


1991 ◽  
Vol 27 (2) ◽  
pp. 1205-1210 ◽  
Author(s):  
J. Fujita ◽  
T. Yoshitake ◽  
T. Satoh ◽  
T. Ichihashi ◽  
H. Igarashi

2000 ◽  
Vol 212 (3-4) ◽  
pp. 423-428
Author(s):  
Hong-Seung Kim ◽  
Kyu-Hwan Shim ◽  
Seung-Yun Lee ◽  
Jeong-Yong Lee ◽  
Jin-Young Kang

Sign in / Sign up

Export Citation Format

Share Document